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ABSTRACT 

Geo-social networks are formed by flows of physical entities (e.g., humans, vehicles, 

sensors, animals), and communication (e.g., information, ideas, innovation) that connect 

places to places and individuals to individuals. Several major problems remain to be 

addressed for understanding the complex patterns in geo-social networks. This 

dissertation makes the following contributions to the theory and methodologies that aim 

at understanding complex geo-social data by integrating methods of computation, 

visualization and usability evaluation.  

Chapter 2 introduces a novel network-based smoothing approach that addresses 

the size-difference and small area problem in calculating and mapping locational (graph) 

measures in spatial interaction networks. The new approach is a generic framework that 

can be used to smooth various graph measures which help examine multi-space and 

multi-scale characteristics of geo-social data.  

Chapter 3 introduces a space-time visualization approach to discover spatial, 

temporal and relational patterns in a dynamic geo-social network embedded in space and 

time. By developing and visualizing a measure of connectedness across space and time, 

the new approach facilitates the discovery of hot spots (hubs, where connectedness is 

strong) and the changing patterns of such spots across space and time.  

Chapter 4 introduces a series of user evaluations to obtain knowledge on how map 

readers perceive information presented with flow maps, and how design factors such as
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flow line style (curved or straight) and layout characteristics may affect flow map 

perception and users’ performance in addressing different tasks for pattern exploration. 

The findings of this study have significant implications for iterative design, interaction 

strategies and further user experiments on flow mapping.
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CHAPTER 1  

INTRODUCTION 

With the increasing availability of affordable long distance travel and advancements in 

communication technology, in the 90s it was predicted that the effect of distance and 

geography may cease to play a role in shaping our world (Atkinson, 1998; Cairncross, 

2001; Ohmae, 1990). However, the growth of cities in the past two decades has 

challenged the theory of “death of space” with the evidence of increased centralized 

investment, and infrastructure development that are mostly urban. Castells (1996) 

rejected the contention that space will disappear upon the technological advancements in 

travel and communication, and he described space as "the material support of time-

sharing social practices”. This new definition of space is built upon the interaction 

between geography, time and “the network society” through the flows of both physical 

and intangible phenomenon such as people, commodities, flights, money, information, 

ideas and innovation. This dissertation uses the concept of geo-social networks to 

describe and study the complex system created by the flows of physical and intangible 

phenomenon from an integrated view of geographic information science (GIScience) and 

network science. 

 Given the complexity introduced by highly interacting systems of geo-social 

networks, solving a real-world problem often requires simultaneous consideration of the 

geographic, temporal and network components that form the system and relationships
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among them. For example, disease spread is influenced by many factors such as human 

mobility, social ties, population dynamics, transportation infrastructure and seasonal 

changes in weather, and the relationships among these factors. Human migration is driven 

by not only the availability of jobs or average temperature at a destination place but also 

the availability of family and friendship ties. During an emergency, knowing how 

information diffuses among geographic locations and through a network of social actors 

is crucial for managing situational awareness and assisting emergency management.  

Geo-social networks are formed by flows of physical entities (e.g., movements of 

humans, vehicles, sensors, animals), and communication (e.g., information, ideas, 

innovation, personal communication) that connect places to places and individuals to 

individuals. A geo-social network is often large (e.g., county-to-county migration data 

have 3000 counties and millions of migrants) and involves complex patterns (1) in 

multiple spaces (e.g., geographic space, network space, multivariate space) with 

components of spatial information, multivariate factors (e.g., demographics of migrants, 

types of commodities), and network structures (e.g., connections between individuals, 

groups and regions) (2) at multiple scales (e.g., national patterns, regional patterns, local 

patterns); and (3) that are dynamic as their geographic, multivariate, and network 

characteristics change over time. From here on, the term “geo-social network patterns” 

will be used to refer to the multi-space, multi-scale and dynamic complexity of patterns 

in geo-social networks.  

Building upon the strong conceptual and methodological overlaps between 

geography and network science, recent studies (Andris, 2011; Faust & Lovasi, 2012; Luo 

& MacEachren, 2014) identified the challenges and potential future research for bridging 
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the gap between network analysis and spatial analysis. Along this path, newly developed 

computational and visual tools (Gao et al., 2013; Guo, 2009; Kumar, Morstatter, & Liu, 

2014; Luo, et al., 2014) have shown great promise for integrating the approaches of 

geography and network science through the use of human-computer collaboration. 

Although these approaches provided significant contribution in the area, several major 

problems remain to be addressed for understanding the complex patterns in geo-social 

networks. The goal of this dissertation is to address the following challenges. First, there 

is a need of new approaches that integrate network and spatial analysis to remove or 

reduce confounding effects such as the problem of size-differences, small area problem 

and the modifiable areal unit problem (MAUP) (Openshaw, 1983) that conceals true 

patterns. Second, there is still a lack of research that examines various aspects and 

interactions within the multi-space, multi-scale and dynamic complexity. Third, although 

flow maps are commonly used to explore geo-social network patterns, very little is 

known about how users perceive and use flow maps, and how different flow map designs 

and tasks influence flow map comprehension.  

Addressing the above challenges for the understanding of complex geo-social 

networks requires the methods of computation, visualization and usability evaluation. 

This dissertation makes the following three contributions to these efforts. Chapter 2 

introduces a new network-based smoothing approach that addresses the size-difference 

and small area problems in calculating and mapping locational (graph) measures in 

spatial interaction networks. The new approach is a generic framework that can be used 

to smooth various graph measures and help examine multi-space and multi-scale 

characteristics of geo-social data. Chapter 3 introduces a space-time visualization 
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approach to discover spatial, temporal and relational patterns in a dynamic geo-social 

network embedded in space and time. By developing and visualizing a measure of 

connectedness across space and time, the new approach facilitates the discovery of hot 

spots (hubs, where connectedness is strong) and the changing patterns of such spots 

across space and time. Chapter 4 introduces a series of user evaluations for 

understanding: how map readers perceive information presented with flow maps; how 

major factors for flow map reading such as flow line style (curved or straight) and layout 

characteristics; and how different tasks for pattern exploration influence flow map 

perception. 

The remainder of this chapter is divided into following sub-sections. Section 1.1 

presents a general overview and categorization of geo-social networks. Section 1.2 

discusses relevant literature in GIScience and Network Science, and integrated 

approaches for analyzing geo-social networks. This chapter concludes with a discussion 

of the dissertation structure. 

1.1 GEO-SOCIAL NETWORKS 

We could categorize geo-social networks into area-based and point-based. In area based 

networks, the original locations are aggregated into a small set of areas and a cumulative 

network of flows is created between geographical areas. Area-based networks are often 

referred to as spatial interaction networks (e.g., county-to-county migration flows, state-

to-state commodity flows). Point-based networks are formed by actors at discrete 

locations. Examples of point-based networks include location-based social networks, 

networks of social media, and mobility data (e.g., tweets, taxi trips, human mobility and 

animal movement).  
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County-to-county migration within the U.S. represents one of the most commonly 

used area-based geo-social networks. There are over 3000 nodes (counties) and millions 

of links (migrants). Each link within this network contains an origin county, a destination 

county, the counts of migrants moved and migrant characteristics (e.g., counts of 

migrants for each income level that move from that specific origin to that specific 

destination). Area-based geo-social networks often suffer the modifiable area unit 

problem and size-difference problem. Original locations are aggregated into a set of areas 

(e.g., county), and flows represent cumulative movements or connections between those 

areas. Different aggregation naturally results in a different network and arbitrary 

aggregation may cause missing major patterns. Also, areal units usually differ in size 

(e.g., population) which may conceal (instead of reveal) the true underlying spatial and 

network structures. For example, Los Angeles County has a population over 9 million 

whereas Loving County in Texas has a population less than 100. As larger counties 

receive and send more flows, flow volumes between the large and small counties are not 

directly comparable. Also, area-based networks suffer from the small area problem as 

flow volume between small areas is unstable as a result of the small populations. To 

obtain insight into true patterns, confounding effects such as MAUP, size-difference and 

small area problem need to be addressed.   

Social media and networking applications makes it possible to collect large geo-

social data from a variety of sources such as Twitter, Foursquare, Flickr, Tumblr and 

Yelp. Such data naturally produce a point-based geo-social network. For example, 500 

million tweets are generated everyday across the world. Approximately 15 million of 

these tweets have geographic coordinates and about 20 million tweets include a 
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geographic reference (e.g., place name) in the message content. Such data naturally form 

massive networks that contain actors (users) and links. Links could be directly formed by 

each user’s connections (e.g., friends, followers, pins) or they could be indirectly derived 

from interactions between actors such as shared text (e.g., re-tweets, hashtags), videos, 

images and web pages. Applications such as Twitter and Facebook have hundreds of 

millions of active users and thus the number of links within such networks easily exceeds 

billions. Moreover, such networks evolve (change) over space and time as individuals 

change location, new individuals are added or removed; relations between users develop 

and change over time; new content is being generated and shared by individuals.  

1.2 LITERATURE REVIEW 

1.2.1 GEOGRAPHIC INFORMATION SCIENCE (GISCIENCE) 

Existing methods of spatial interaction analysis in GIScience could be classified as 

descriptive statistics, modeling approaches and exploratory approaches. Methods of 

descriptive statistics such as summary tables, histograms, scatter plots, pie-charts, line-

charts, and bar-charts (Cadwallader, 1992; Morrill, 1988; Pooley & Turnbull, 1998) have 

been widely used to provide summaries of spatial interaction data in conjunction with 

some visual displays. Although these methods are useful in discovering general patterns, 

they are not effective when the data are large and have multi-space complexity.  

1.2.1.1 SPATIAL INTERACTION MODELING 

Spatial interaction modeling has been widely employed in many research fields. Gravity 

models are the examples of the earliest spatial interaction models that predict the 

interaction between two locations using a function of the attributes of those locations and 
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the distance between them. Gravity models were then replaced by the more general 

concepts of entropy. Entropy and information theoretical models provided a statistical 

framework in the prediction of interactions. Models that utilize a probabilistic framework 

were then widely developed in the fields of spatial econometrics, physics, geography, and 

transportation modeling. A detailed review of spatial interaction modeling could be found 

in (Roy & Thill, 2004). Spatial interaction models are theory-driven and they are used to 

predict the effects and causes of interactions based on some theoretical assumptions. 

Spatial interaction models are inadequate for analyzing spatial interaction data because of 

many reasons such as theoretical assumptions, exclusion of critical factors out of the 

model, and not being able to address the challenge that result from high dimensionality of 

spatial interaction data. For example, to discover the influence of location characteristics 

on migration, spatial interaction models (Dorigo & Tobler, 1983; W.H. Frey, Liaw, Xie, 

& Carlson, 1995) have been developed that predict flows of migrants based on a set of 

origin-destination characteristics. However, the selection of the origin-destination 

characteristics within these models are determined by previously known hypotheses and 

the models incorporate only a small selection of these characteristics while disregarding 

information that is not included in the model. Other examples of spatial interaction 

models focus on discovering migration patterns between different sizes of settlements 

within the urban hierarchy (W. H. Frey, 2005; L. Long, 1988; David A. Plane & 

Jurjevich, 2009; Pooley, 1979; C. C. Roseman, 1977) and uncovering the influence of 

location characteristics on attracting or distracting migrants (Dorigo & Tobler, 1983; 

W.H. Frey et al., 1995). 
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1.2.1.2 REGIONALIZATION AND GRAPH PARTITIONING 

Regionalization is a method to group spatially contiguous regions based on an objective 

function (e.g., connectivity within regions are maximized) (Wise, Haining, & Ma, 1997). 

By aggregating the geographic units into regions, a regionalization method could help 

overcome the limitations of flow mapping such as spurious data variations and discovery 

of general flow patterns. A range of techniques such as hierarchical clustering, principal 

components analysis and factor analysis have been used to identify regions in the 

migration literature (Morrill, 1988; Pandit, 1994; P. Slater, B., 1975; P. B. Slater, 1976, 

1984). Although they have been used to identify regional structure in conjunction with 

domain knowledge, these techniques are not capable of extracting spatially contiguous 

regional structures and the regionalization strategy does not guarantee consistent patterns 

(e.g., different groupings result in a lot different flow structure and the decision to 

regionalize is not objective).  

Guo (2009) proposed a spatially constrained hierarchical clustering and 

partitioning approach to derive spatially contiguous regions in a spatial interaction 

network in which connections between locations were determined by a set of measures 

such as modularity.  For example, in migration case, modularity measure considers 

background population to remove the expected flows from the actual flows. This measure 

is used to define links (connections) of the network and a set of hierarchical clustering 

methods is used to obtain several hierarchies of regions. Then, combining a graph 

partitioning with a fine tuning strategy, an objective function which optimizes the within 

region connectivity is used to derive natural regions (community structures) from the 

hierarchies of regions. In addition to discovery of natural regions from the flow structure, 
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and handling the spurious data variations; this approach also offers solutions to visual 

cluttering problem by generalizing flow patterns to higher abstraction levels using the 

discovered hierarchy of regions. 

1.2.1.3 FLOW MAPPING 

Flow maps illustrate the movement of phenomena between pairs of locations (origins and 

destinations). Slocum et al. (2009) identifies five kinds of flow maps: distributive, 

network, radial, continuous and telecommunications flow maps. A Distributive flow map 

can further be categorized into two subcategories based on whether it depicts actual 

routes of flow or abstract links that connect locations. French cartographer Charles 

Joseph Minard’s flow map depicting the shipping routes of wine exported from France 

(Robinson, 1967) is one of the earliest examples of a distributive flow map that depict 

actual routes of flow. On the other hand, Tobler’s (1976) flow maps depicting state-to-

state migrations are examples of flow maps that include abstract links that connect 

locations.  

The second type of flow maps is a network flow map that depicts flows within 

networks such as transportation and utility networks. Parks (1987) discusses that a map of 

general shipping routes is a form of network flow map since they depict flows on the 

network of shipping route. The main distinction for network flow maps is that the route 

of flows is more important than the precise flow values exchanged between locations. 

The third type is a radial flow map that depicts radial pattern of movement to/from each 

location (as in Color Plate 19.3 in Slocum et al., 2009). The radial pattern is illustrated 

using a start/snowflake schema in which edges correspond to flows to or from a list of 

selected locations. The fourth type is a continuous flow map that depicts the movement of 
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a continuous phenomenon such as wind or ocean currents. Since the magnitude and 

direction of flows change at any location, continuous flow maps are depicted using unit-

vectors.  

Finally, the fifth type is telecommunication flow maps which Slocum et al. (2009) 

describes as flows of telecommunications technology such as the Internet and its 

associated information spaces. Although they might depict location-to-location 

interactions, telecommunication flow maps are often created by a graph drawing 

algorithm or a strategy that places nodes according to an objective such as preserving 

distinctive patterns (e.g., community structures) in the network. A discussion of graph 

drawing methods is given in the section 2.1.4. Graph Visualization.  

DESIGN AND ISSUES 

In a flow map, a flow is often depicted as a straight or curved line connecting an 

origin to a destination. The color and/or width of each line can be used to represent the 

volume of the flow. The directionality of a flow is commonly displayed using arrows and 

the right-hand traffic rule that draws a flow line on the right side while the line is pointing 

to its destination (Guo, 2009). Bezier curves can also be used to draw flow lines where 

each line is curvy at the origin and straight on the destination end. Also, two divergent 

colors can be used to distinguish the origin and destination of a flow line (Boyandin et al., 

2010).  

There are many issues regarding the design of a flow map. First, a flow map can 

easily become cluttered when it displays a large number of flows. To overcome this 

problem, interaction operators such as linking (Buja et al., 1996), brushing (Alan M 

MacEachren, Wachowicz, Edsall, Haug, & Masters, 1999; Shepherd, 1995), filtering and 
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zooming (Keim, 2002; Shneiderman, 1996) can be used to manipulate the representation 

in a way that there are less but more “important” flows on the map. Tobler (1987) and 

Yadav-Pauletti (1996) implemented interactive flow mapping applications that allows 

selecting a subset of flows, origins and destinations based on user queries. User 

interactions are helpful in answering task-based questions in interactive applications, 

however, by only relying on the use of interaction operators does not provide an 

overview of the data (Andrienko et al., 2007).  

Some studies (Holten & van Wijk, 2009; Lambert et al., 2010) employ edge 

bundling to overcome the cluttering problem in flow maps. Edge bundling is a technique 

to visually bundle adjacent edges together in such a way that edges are merged into 

bundles along their joint paths and fanned out at the end. The flow map layout derived by 

an edge bundling approach is similar to the layout of a distributed flow map depicting 

actual routes of flows. However, flow lines are determined by an algorithm and do not 

represent actual routes in the former. Spiral trees (Buchin et al., 2011; Phan, Xiao, Yeh, 

& Hanrahan, 2005) have been introduced by combining the edge bundling method with 

spiral layout algorithms. Spiral trees are especially effective when the task is to show 

connections (e.g., inflows, outflows) of one or a few places. Although edge bundling 

methods reduce the overall edge crossings by grouping the edges into bundles, it does not 

provide a solution to recognizing natural flow patterns. 

Alternatively, computational and visual tools have been utilized to summarize the 

flow data and display the most interesting flows. Liu (1995) was one of the earliest 

scholars to summarize flow data by using projection pursuit methods and then visualize 

multivariate and spatial aspects of the data in multiple views by utilizing dynamic 
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brushing technique. Similarly, Yan and Thill (2009) used self-organizing maps (SOM) 

linked with a flow map to reduce the complexity of the data and visualize multivariate 

patterns. Guo (2009) incorporated a hierarchical regionalization method into a flow 

mapping framework to discover a hierarchy of geographical (natural) regions 

(communities), where there are more flows or connections within regions than across 

regions. Guo’s (2009) regionalization method is effective in summarizing large flow data 

while preserving major structural patterns.  

Second, a flow map is usually dominated by spurious data variations. Spatial 

interactions form networks which are usually scale-free (Newman, 2003) with a small 

number of hubs with a larger number of connections. For example, in county-to-county 

migration network, there are huge variations between the sizes (i.e., population) of 

counties. Counties with larger populations have larger flows as compared to other 

regions. However, larger flows do not necessarily indicate interesting patterns. Therefore, 

a strategy is needed to remove or at least reduce the effect of counties with differing 

populations.  

Iterative proportional fitting procedure (IPFP) (P. Slater, B., 1975) has been 

widely used to reduce the effect of size on the flow structure. IPFP provides a double 

standardization and each individual cell in the result matrix shows a relative estimation of 

the number of people who would migrate from the specific origin to the specific 

destination (which is identified by the specific value of the cell), if all spatial units 

(counties) had the same number of in-migrants and out-migrants. Scaling does not change 

the cross-product ratio of the diagonal elements of the original matrix, and as a result the 

flow structure is preserved. However, IPFP transformation can distort the relative 
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significances of nodes in a spatial interaction network in which the variability of node 

sizes is large (Fischer, Essletzbichler, Gassler, & Trichtl, 1993; Holmes, 1978). Guo and 

Zhu (2014) recently developed flow smoothing approach to generalize flow maps, 

remove spurious data variance, normalize flows with control population, and detect high-

level patterns that are not discernible with existing approaches. 

Third, rather than focusing on individual flows between the spatial units (e.g., 

county-to-county flows), a flow map should allow visual examination of flows that have 

similar characteristics (e.g., multivariate components of flows and locations), or natural 

regions (community structures) that are strongly connected to each other. Therefore, a 

strategy is needed to discover general flow patterns with multivariate components at 

higher abstraction levels. 

APPLICATIONS 

Tobler (1987) was the first one to develop a flow mapping application. The 

application was demonstrated using state-to-state migration flows and the user could use 

filtering operators to depict one-way migration to/from a particular state by arrows of 

varying width. While depicting flows between all states, the flows below the mean were 

removed in order to overcome the cluttering problem. Tobler’s original software was 

later updated to an interactive application that included new features such as colored and 

scaled arrows, two-way flows and a setting to control the movement volume to be shown 

(W. Tobler, 2004). While Tobler introduced the major framework for a flow mapping 

application, other applications were also developed in the meantime. For example, 

Yadav-Pauletti (1996) developed a migration mapping software that utilized animation 

with small multiples to depict migration flows over time. Similarly, Thompson and Lavin 
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(1996) developed an application to automate the generation of animated vector field 

maps.  

Phan et al. (2005) developed a flow mapping application that bundles edges to 

minimize edge crossings using a hierarchical clustering method. The goal of Phan et al.’s 

(2005) application was to create a flow map layout thus the user interactions are limited 

for exploratory visualization. Using node clustering and flow aggregation, Boyandin et al. 

(2010) introduced an interactive application to analyze temporal changes in migration 

flows. Boyandin et al.’s (2010) application supports user interactions such as flow and 

node highlighting, selection and dynamic queries for filtering out flows by their volume 

and length. Using multiple linked views, Guo (2009) introduced an interactive and 

integrated flow mapping framework to discover community structures (natural regions), 

identify multivariate relations of migration flows, and examine the spatial distribution of 

both flow structures and multivariate patterns. User interactions such as selection-based 

brushing and linking are provided to allow the user to change the selection and 

combination of variables to examine different multivariate flow patterns or choose 

different number of regions to visualize flow patterns at different levels (e.g., local, 

regional and national).  

1.2.2 NETWORK SCIENCE  

In the following subsections, the network science approach which draws on theories and 

methods of graph theory, statistical mechanics, social network analysis (SNA), data 

mining and information visualization will be discussed.  
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1.2.2.1 STRUCTURAL CHARACTERISTICS 

Graph theoretical measures such as centrality (Bonacich, 1987; Borgatti, 2005; Freeman, 

1977; Kolaczyk et al., 2009; Wasserman & Faust, 1994), clustering coefficient (Watts & 

Strogatz, 1998), assortativity, and disassortativity (Newman, 2003) are often used to 

understand structural characteristics of social networks. Each measure can inform about a 

certain type of characteristic and that particular characteristic might not be relevant for all 

type of networks. To apply these measures to a network requires an initial knowledge of 

what kind of characteristic to look for.  

In order to characterize network structures in terms of the relative importance of 

nodes, different types of centrality measures have been widely used in social network 

analysis (Bonacich, 1987; Freeman, 1977; Scott, 2000; Wasserman & Faust, 1994). 

Major examples of these indices are: point degree centrality in which a node is more 

central if it has relatively more connections; betweenness centrality in which a node is 

more central if it lies between the various other points and mediates connections. 

Moreover, centrality definition is also defined as a function of geodesic distance in the 

network space. For example, according to closeness centrality a node is more central if it 

lies at short distances from many nodes. On the other hand, according to competitive 

distance centrality, if a node is connected to central points, it becomes more central and it 

transmits this centrality to other points as well (Bonacich, 1987; Scott, 2000). 

Centrality measures provide information about the relative importance of the 

nodes in the network. From another perspective, the focus could also be the 

neighborhood of nodes. For example, one might want to know if a person (a node) whose 

friends (neighbors) are also friends (neighbors) to each other. Clustering coefficient 
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measure could answer this question by characterizing the presence of loops in the 

network. Another example related to the neighborhood could be to find out if the hubs 

(people having the greatest number of connections) are well connected to each other 

(Costa et al., 2007). “Rich-club coefficient” (Zhou & Mondragon, 2004) that shows if 

nodes of higher degree are more interconnected to each other than nodes with lower 

degree, could be applied to answer such a question.   

Gastner and Newman (2006) showed that there is a strong connection between the 

topological and geographical features of spatial networks. Several measures of centrality 

have been used to analyze spatial networks such as migration (Irwin & Hughes, 1992), 

commuting (Limtanakool, Schwanen, & Dijst, 2009), and habitat connectivity (Estrada & 

Bodin, 2008; Estrada et al., 2008). Also, similar measures have also been introduced in 

application-specific domains. For example, in order to discover geographical 

concentration (i.e., spatial focusing) of interregional migration flows, many indexes have 

been developed such as Gini index (D. A. Plane & Mulligan, 1997), coefficient variation 

(Long & National Committee for Research on the 1980 Census., 1988), migration 

efficiency (D. Plane, A. & Rogerson, 1991). 

1.2.2.2 DEGREE DISTRIBUTIONS 

Analyzing degree distribution (Barabási & Albert, 1999) is another commonly used 

method to quantify the network features of interest. The degree distribution, P(k) 

expresses the fraction of nodes in a network with degree k (Costa et al., 2007). 

Correlations between different degrees of nodes within a distribution might show 

important clues about the network structure. For example, if people having a lot of 

connections (high degree nodes) tend to connect with people that have a few connections 
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(low degree nodes), then the network could be called disassortative. On the contrary, if 

people tend to connect to other people with the same number of connections (having 

same degrees), then the network is called to be an assortative one (Newman, 2002). 

Several network models have been developed to define topological properties of 

networks by looking at degree-distributions. Random graphs, small-world, and scale-free 

graphs are some of the most common network models.   

1.2.2.3 COMMUNITY DETECTION 

As well as using statistical and graph theoretical measures to characterize networks, 

exploratory approaches have been developed to discover structural patterns (e.g., 

community structures) within networks. Some examples to these approaches are graph 

partitioning (Schloegel et al., 2000), hierarchical clustering (Clauset et al., 2004), and 

mixture models (Newman & Leicht, 2007). These approaches discover certain types of 

structural patterns such as assortative mixing (e.g., nodes that have many connections 

tend to be connected to other nodes with many connections) and disassortative mixing 

(e.g., nodes that have many connections tend to be connected to nodes with less 

connections) (Newman, 2002). Without depending on any prior knowledge about what to 

look for, exploratory approaches extract interesting and unknown information hidden in a 

network. 

1.2.2.4 GRAPH VISUALIZATION 

Graph visualization is similar to flow mapping in that they are both used to visualize 

networks. The difference between these two methods is in how they construct the layout 

of the network (graph). In flow mapping the layout is predetermined by placing nodes at 

their corresponding geographic coordinates, whereas in graph visualization the layout is 
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generated by a graph drawing algorithm which places nodes according to an objective 

such as preserving the structural patterns (e.g., community structures) in the network. 

Graph drawing methods are widely used to visualize non-spatial networks such as social 

networks and biological networks.  

The same network could be visualized by different layouts for different purposes. 

For example, when displaying very large networks, force-directed algorithms (Battista, 

Eades, Tamassia, & Tollis, 1999) are one of the most common methods to obtain an 

aesthetically pleasing layout by positioning the nodes in a way that all the links are of 

more or less equal length with fewer intersections. Graph drawing is a combinatorial 

optimization problem that requires optimization of several parameters such as edge 

crossings and distance measures between nodes and edges. In addition to force-directed 

method, there are several other types of algorithms such as multidimensional scaling, 

stress majorization (E. Gansner, Koren, & North, 2004), cross minimization (Kato, 

Nagasaki, Doi, & Miyano, 2005), incremental arrangement (Cohen, 1997). In addition to 

graph layout algorithms, interactive environments that allow visual examination through 

navigation techniques such as pan-and-zoom, fisheye and topological zooming have been 

developed (Abello, van Ham, & Krishnan, 2006; E. R. Gansner, Koren, & North, 2005). 

1.2.3 INTEGRATING GEOGRAPHY WITH NETWORK SCIENCE 

In geography and spatial sciences, the complex web of relationships between humans, 

environment and society are studied through the perspective of space, place and time 

(Goodchild et al., 2000) with diverse application areas such as global trade (Poon, 1997), 

human migration (Young, 2002), diffusion of innovation (Maggioni, Nosvelli, & Uberti, 

2007), and disease spread (T. Davies, M. & M. Hazelton, L., 2010) . These studies are 
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similar in that they conceptualize interactions as a function of geographic distance and 

characteristics between locations, while disregarding the connections between the actors 

(e.g., countries, migrants, companies, and humans) of the network. On the other hand, 

theories of network and social sciences emphasize social interactions between the actors 

of a network while considering the influence of geography in a limited manner. A variety 

of computational and statistical methods such as graph theoretical measures (Scellato et 

al., 2011), random graph modeling (Schaefer, 2012), factor analysis (Hipp et al., 2012), 

simulation (Butts et al., 2012), and regression analysis (Viry, 2012)  have considered 

influence of geography in their analysis of social networks. However, the methodologies 

introduced by these studies have limited capability in analyzing the spatial, temporal and 

relational aspects as they treat geography as a background variable.  

By examining the similarities between the theories and methodologies of 

GIScience and Network Science, recent studies (Andris, 2011; Faust & Lovasi, 2012; 

Luo & MacEachren, 2014) identified the challenges and potential future research for 

bridging the gap between social network analysis and spatial analysis. Along this path, 

newly developed methods of computation-visualization framework and visual analytics 

(Gao et al., 2013; Guo, 2009; Kumar et al., 2014; Luo, et al., 2014)  have shown great 

promise to address the challenge of integrating the approaches of geography and network 

science through the use of human-computer collaboration.  

1.2.4 USABILITY IN GEOVISUALIZATION 

Usefulness of a system shows whether the system can be used to achieve the goals of 

analysis. Utility and usability are sub-components of usefulness. Usability describes ease-

of-use and is often measured with five attributes: learnability, error rates, efficiency, 
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memorability, and satisfaction (Nielsen, 1993; Rubin, 2008). On the other hand, utility 

describes usefulness and can be evaluated through benchmark tasks or grading of 

insights. 

Traditional testing methods under controlled conditions are not suitable for 

evaluating the utility of visual tools because of the exploratory nature of visualization 

(Demsar, 2007). This is mainly because it is hard to define effectiveness or “success” for 

an exploratory task. Andrienko et al. (2002) suggest users should be given a free hand so 

that they could ask new questions and generate new hypotheses. However, it is 

challenging to observe exploratory behaviors of users and interpret the results since they 

are not replicable.  

There are two alternative approaches to evaluating utility of a visualization tool: 

an objective-based approach and an insight-based approach. An objective-based approach 

(Roth, 2012) classifies interaction into a set of visual tasks (Demsar, 2007; Etien L. Koua 

& Kraak, 2004; C. Tobon, 2005; C. m. Tobon, 2002) and compares the effectiveness of 

users completing those tasks. On the other hand, an insight-based approach (Chang, 

Ziemkiewicz, Green, & Ribarsky, 2009; North, 2006) captures and grades individual 

observations about the data or visualization by the participant as an insight, a unit of 

discovery.    

An objective-based approach categorizes interaction into a set of visual tasks the 

user may wish to complete with the cartographic interface (Roth, 2012). Visual tasks are 

derivatives of basic visual operators such as identify, compare, associate, etc., and were 

first introduced by Wehrend and Lewis (1990). Using the objective-based approach, 

many studies (Aufaure-Portier, 1995; Davies, 1995; Knapp, 1995) decoded the 
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exploration process into visual tasks (identifying clusters in the data, finding relationships 

between elements, comparing values at different locations and distinguishing spatial 

patterns, identifying spatial positions of objects, their spatial distribution and density, 

etc.) and performed experiments (Koua et al., 2006; C. Tobon, 2005) based on those 

visual tasks.  

An insight-based approach is composed of three phases: defining insight, 

identifying several measurable characteristics of insight, and establishing methods to 

recognize insight (Gotz & Zhou, 2008). There is no commonly accepted definition of 

insight, however, North’s (2006) definition of insight as complex, deep, qualitative, 

unexpected and relevant seems to cover most aspects of insight discussed in the 

visualization community. Saraiya et al. (2004) categorized measurable characteristics of 

insight as observation (occurrence of insight), time (when the insight was generated), 

correctness of the insight and category (types of insight, e.g., insight into data, insight 

into visualization). A think-aloud protocol can be used to capture insights and 

quantifiable usability characteristics of each insight is then encoded for analysis.  

In addition to the insight-based and objective-based approaches, measures of 

mental effort and visualization efficiency have been introduced to better understand the 

perception of graphs using the cognitive load approach. The cognitive load approach 

evaluates cognitive capacity allocated to accommodate the demand imposed by a visual 

task by implementing subjective measures such as rating scales (Wierwille & Casali, 

1983; Zijlstra, 1993), performance-based measures and physiological measures such as 

pupillary dilation (De Waard & Studiecentrum, 1996; Paas, Tuovinen, Tabbers, & Van 

Gerven, 2003). A number of studies  that employed empirical testing of mental effort 
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(Huang, Eades, & Hong, 2009; Paas et al., 2003) suggest that subjective rating scale 

techniques of perceived mental burden are easy to use, inexpensive, can detect small 

variations in workload, reliable, and provide decent convergent, construct and 

discriminate validity. Huang, Eades and Hong (2009) further developed a measure of 

visualization efficiency which is the difference between cognitive cost (i.e., mental effort 

and response time) and cognitive gain (response accuracy). According to the definition of 

visual efficiency, high efficiency is gained with high accuracy and low mental effort and 

a short response time, whereas low efficiency occurs when low accuracy is associated 

with high mental effort and a long response time.  

1.3 DISSERTATION STRUCTURE 

This dissertation introduces a theme for understanding complex patterns of geo-social 

networks using three independent manuscripts. Each of these manuscripts represents a 

chapter of the dissertation (chapters 2-4). Chapter 2 introduces a generic framework that 

can be used to smooth various graph measures and is the first attempt that truly considers 

the flow structure in implementing spatial kernel smoothing in a spatially embedded 

network. Due to the copyright agreement of the published material, further analyses and 

discussion of the results are included in Appendix A. Chapter 3 introduces a novel 

approach to discover spatial and structural patterns among individual locations of a 

dynamic geo-social network embedded in space and time. By developing and visualizing 

a measure of connectedness across space and time, the new approach facilitates the 

discovery of hot spots (hubs, where connectedness is strong) and the changing patterns of 

such spots across space and time. Chapter 4 introduces a user evaluation to obtain 

knowledge on how map readers perceive information presented with flow maps, and how 
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design factors such as flow line style (curved or straight) and layout characteristics may 

affect flow map perception and users’ performance in addressing different tasks for 

pattern exploration.  Chapter 5 concludes with the findings, broad impacts and future 

research directions.  
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CHAPTER 2  

SMOOTHING LOCATIONAL MEASURES IN SPATIAL INTERACTION NETWORKS
1
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2.1 ABSTRACT 

Spatial interactions such as migration and airline transportation naturally form a location-

to-location network (graph) in which a node represents a location (or an area) and a link 

represents an interaction (flow) between two locations. Locational measures, such as net-

flow, centrality, and entropy, are often derived to understand the structural characteristics 

and the roles of locations in spatial interaction networks. However, due to the small-area 

problem and the dramatic difference in location sizes (such as population), derived 

locational measures often exhibit spurious variations, which may conceal the underlying 

spatial and network structures. This paper introduces a new approach to smoothing 

locational measures in spatial interaction networks. Different from conventional spatial 

kernel methods, the new method first smoothes the flows to/from each neighborhood and 

then calculates its network measure with the smoothed flows. We use county-to-county 

migration data in the U.S. to demonstrate and evaluate the new smoothing approach. 

With smoothed net migration rate and entropy measure for each county, we can discover 

natural regions of attraction (or depletion) and other structural characteristics that the 

original (unsmoothed) measures fail to reveal. Furthermore, with the new approach, one 

can also smooth spatial interactions within sub-populations (e.g., different age groups), 

which are often sparse and impossible to derive meaningful measures if not properly 

smoothed. 

 

Keywords: smoothing, spatial interaction, spatial network, network measure  



www.manaraa.com

 

26 

 

2.2 INTRODUCTION 

Spatial interactions, such as migration and airline travel, naturally form a location-to-

location network (graph). In the network a node represents a location (or an area) and a 

link represents an interaction (flow) between two locations. Locational measures, 

including both simple ones such as in-flow, out-flow, and net-flow and more complicated 

ones such as centrality, entropy and assortativity, are often derived to understand the 

structural characteristics and roles of locations in generating interactions. However, due 

to the dramatic differences in size (such as population) among locations and the small-

area problem, locational measures derived with the original flow data often exhibit 

spurious variations and may not be able to reveal the true underlying spatial and network 

structures.  

Scaling approaches such as iterative proportional fitting procedure (IPFP) are 

often employed (Clark, 1982; Pandit, 1994) to remove the confounding effects of origin 

and destination sizes on flows. However, such transformation procedures may distort the 

relative significances of nodes in a network (Fischer et al., 1993; Holmes, 1978). 

Alternatively, several studies have applied existing spatial kernel smoothing methods to 

remove spurious data variations (Porta et al., 2009; Sohn & Kim, 2010), which treat a 

locational measure (e.g., centrality) as a regular attribute and apply a traditional spatial 

kernel smoothing method to directly smooth the derived measure values. However, 

directly smoothing the measure values may generate unreliable or even misleading 

results for two main reasons. First, the original measure values may be unstable due to 

varying unit sizes and small flows between units. Second, traditional smoothing methods 

do not differentiate flows within and beyond a neighborhood and it is inappropriate to 
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directly smooth original locational measures. For example, the net flow ratio (i.e., net 

flow / total flow) for a neighborhood (i.e., a group of contiguous spatial units) cannot be 

calculated as the average of unit-level net flow ratios within the neighborhood. 

We introduce a new approach to smoothing locational measures in spatially 

embedded networks. For each location, the new method first smoothes the flows to/from 

that location considering flows to/from its neighborhood and then calculates its locational 

measure with the smoothed flows. The same procedure is repeated for each location, 

using the original flows (i.e., the smoothed flows for the previous location are not used). 

The neighborhood of a location is defined as the minimum set of nearest neighbors that 

meet a size constraint (such as a minimum population threshold or a distance threshold). 

To demonstrate the usefulness of the approach, we use the county-to-county migration 

data in the U.S. and smooth the net migration rate and entropy measure for each county. 

The smoothed results clearly help discover natural regions of attraction (and depletion) 

and a variety of structural characteristics that the original measures fail to reveal. 

Furthermore, we also smooth measures for sub-populations (e.g., different age groups), 

which can help discover not only distinctive regions of attraction and depletion but also 

show that attractiveness changes in both geographic space and multivariate space (e.g., 

migrants of different ages). 

2.3 RELATED WORK 

2.3.1 LOCATIONAL MEASURES 

Locational measures (network/graph measures) have been extensively used in spatial 

interaction analysis to examine structural characteristics such as centrality (Hughes, 

1993; Irwin & Hughes, 1992), entropy (Limtanakool et al., 2009), connectivity (Estrada 
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& Bodin, 2008), assortativity and disassortativity (Fagiolo, Reyes, & Schiavo, 2009) and 

weighted clustering coefficient (De Montis, Barthelemy, Chessa, & Vespignani, 2007). 

Similar measures have also been introduced in application-specific domains such as 

migration. For example, many index approaches have been developed and used to 

quantify migration characteristics such as spatial focusing of migration streams (D. A. 

Plane & Heins, 2003; D. A. Plane & Mulligan, 1997; A. Rogers, 1992; Andrei Rogers & 

Raymer, 1998; Andrei Rogers & Sweeney, 1998). The index measures are usually 

derived for each location with the graph data (e.g., migration network). Commonly-used 

measures include net migration rate (A. Rogers, 1992), Gini index (D. A. Plane & 

Mulligan, 1997), coefficient variation (L. Long, E., 1988) and migration efficiency (D. 

Plane, A. & Rogerson, 1991). However, due to the dramatic difference in unit size (e.g., 

population) and the small-area problem, derived locational measures often exhibit 

spurious data variations, and may conceal (instead of reveal) the true underlying spatial 

and network structures. 

2.3.2 ITERATIVE PROPORTIONAL FITTING PROCEDURE (IPFP) 

In order to remove the effects of location sizes on flows and capture patterns that are not 

necessarily associated with larger volumes, scaling approaches have been employed 

(Clark, 1982; Pandit, 1994; P. Slater, B., 1975). The most commonly used scaling 

approach is the iterative proportional fitting procedure (IPFP), which can be used to 

standardize a migration network by transforming the flows among locations so that all 

locations have the same inflow and outflow. Scaling does not change the cross-product 

ratio of the diagonal elements of the original matrix, and as a result the flow structure is 

preserved. However, IPFP transformation can distort the relative significances of nodes 
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in a spatial interaction network in which the variability of node sizes is large (Fischer et 

al., 1993; Holmes, 1978).  

2.3.3 KERNEL DENSITY ESTIMATION AND SMOOTHING 

Kernel density estimation or smoothing methods are commonly used for smoothing 

lattice spatial data, e.g., point- or area-based location attribute data, which are different 

from connection-based spatial interaction data. A spatial kernel smoothing method 

recalculates the attribute value of a location using a weighted average of the attribute 

values of its spatial neighbors (Borruso & Schoier, 2004; Carlos, Shi, Sargent, Tanski, & 

Berke, 2010), where the weight is calculated considering geographic distance. 

Alternative to spatial kernel smoothing, locally weighted average smoothing that uses a 

background value such as population to calculate weights is commonly used in 

smoothing disease rates (Kafadar, 1994; X. Shi, 2010). Bandwidth and kernel function 

selection are two important parameters in a spatial kernel smoothing method. The choice 

of the bandwidth determines the maximum radius (e.g., the extent of the neighborhood) 

or the number of neighbors that is considered to have an effect on the point of interest. 

The kernel function determines how each neighboring observation will be weighted and 

considered in the smoothing process. Previous research on kernel density estimation 

proved that the performance of the estimation is greatly affected by the choice of the 

bandwidth while the kernel function usually does not have a significance effect (Bors & 

Nasios, 2009; Silverman, 1986).  

The most commonly used kernel functions include Gaussian kernel, triangular 

kernel, and Epanechnikov’s kernel (Danese, Lazzari, & Murgante, 2008; Wand & Jones, 

1995). There are two main types of bandwidth: fixed and adaptive. In a fixed-bandwidth 
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approach, the radius that defines the extent of the neighborhood is assumed to be the 

same throughout the dataset. An adaptive bandwidth allows the radius to vary from one 

data point to another. Domain knowledge is commonly used to obtain a fixed bandwidth. 

However, it is widely acknowledged that a fixed bandwidth causes biased estimations for 

most spatial data sets, where the underlying density often exhibit significant spatial 

heterogeneity (T. M. Davies & M. L. Hazelton, 2010). Alternatively, various adaptive 

bandwidth approaches have been developed (Abramson, 1982; Carlos et al., 2010; Sain 

& Scott, 1996; Yang, Luan, & Li, 2010), which can be categorized into model-based and 

domain-based approaches.  

In model-based bandwidth selection approaches, the goal is to improve a 

statistical model fit such as in geographically weighted regression. A statistical criterion 

is often used to provide guidance on selecting an appropriate bandwidth among a large 

number of possible bandwidth values (D'Amico & Ferrigno, 1990). Cross-validation 

(CV), Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC) are 

among the most commonly used criteria to select an appropriate bandwidth for local 

spatial statistics such as geographically weighted regression (Fotheringham, Brunsdon, & 

Charlton, 2002). In model-based approaches, an appropriate bandwidth is the one that 

gives the best model fit among a large number of possible bandwidth values. However, 

model-based approaches are not applicable for spatial smoothing in which there is no 

statistical model to fit and the goal is to smooth each unit with the neighborhood values.  

In domain-based bandwidth selection approaches, a relevant attribute (e.g., population) is 

used to determine the bandwidth. For example, to adapt with the underlying 

heterogeneous population distribution common in public health research, some studies 



www.manaraa.com

 

31 

 

(Carlos et al., 2010; Xun Shi, 2009) have utilized a population threshold (i.e., the size for 

a neighborhood) to determine the adaptive bandwidth. Therefore, the bandwidth stops 

expanding when the threshold value is reached.  

2.3.4 SMOOTHING NETWORK MEASURES 

Traditional smoothing methods introduced above have been adopted and used in 

transportation analysis research (Porta et al., 2009; Sohn & Kim, 2010) in order to 

accommodate the neighboring effect in calculating centrality measures. Existing 

smoothing practices treat the locational network measure (e.g., centrality) as a regular 

attribute and apply an existing spatial kernel smoothing method to directly smooth each 

locational measure with neighboring values. However, since a network measure 

summarizes the structure of the flows incident on a node in a network, it is inappropriate 

to directly smooth measure values without considering the flow structure within and 

beyond the neighborhood.  

2.4 METHODOLOGY 

The new smoothing approach consists of four steps. First, for a location (node) s in a 

spatial interaction network, identify its spatial neighborhood Ns based on a geographic 

distance threshold (fixed-bandwidth) or a size threshold such as a minimum population 

(adaptive-bandwidth). The neighborhood Ns is represented with a gray circle in Figure 

2.1.  

Second, temporarily remove the flows within the neighborhood, i.e., those with 

both origin and destination in the same neighborhood. Note that these flows are excluded 

only for this specific neighborhood and are still eligible for consideration for other 

neighborhoods. Then we weigh flows from/to the nodes (including s) in the 
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neighborhood based on their distances to location s. The result is a smoothed sub-graph, 

in which lows to/from location s are modified considering follows to its neighbors. 

Figure 2.1(B) illustrates the smoothed sub-graph of a location s where flows within Ns 

are removed and flows to/from Ns  (shown by dashed lines) are weighted and partially 

considered as flows to/from location s.  

Third, calculate the needed network measure for location s with the smoothed 

sub-graph. In other words, the weighted flows to/from the neighborhood are used in 

calculating the network measure for the location.  

Fourth, repeat the above three-step process for each location (node). After the 

measure is obtained for a location, the smoothed flows are discarded and their original 

flows are restored. In other words, the smoothing (Step 2) is only temporary for each 

neighborhood.   

In following subsections, we introduce each of the steps. To demonstrate the 

approach, we use county-to-county domestic migration data between 1995 and 2000 in 

the contagious U.S. provided by census surveys, which includes 3075 counties (of the 48 

continental states and Washington D.C.) and millions of migrants moving between these 

counties. Each data record has an origin county, a destination county, the count of 

migrants, and migrant characteristics, e.g., counts of migrants for each income level or 

age group that move from the origin to the destination.  
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Figure 2.1: An illustration of the smoothing approach for spatial interaction data. The 

left map (A) shows the original data. The map on the right (B) shows smoothed flows 

related to a location (in red, at the center of the circle) and its neighborhood (gray circle). 

Dashed lines represent weighted flows to/from the neighborhood that are now partially 

considered as flows to/from the location in red and used in calculating the network 

measure for the location.  

 

2.4.1 BANDWIDTH SELECTION 

There are two potential alternatives for choosing the bandwidth. If applicable to the 

context of the spatial interaction network, a domain-based approach could be employed, 

which uses an attribute and a threshold value to configure the size of a neighborhood, 

e.g., the population or total flow of a neighborhood. Alternatively, a data-driven approach 

could be employed to determine the bandwidth according to the properties of the spatial 

interaction network. In this research we primarily focus on the first approach (domain-

based) to configure neighborhood and discussed the alternative (data-driven) approach in 

the conclusion section.  

In spatial interaction data, locational measures can be sensitive to the volume of 

flows or population of involved locations. It is more meaningful to make each 

neighborhood be of a similar and sufficiently large size so that the flows to/from different 

neighborhoods can be compared. Therefore, we employ a domain-based approach and 

use a population threshold to determine the adaptive bandwidth (or neighborhood size) 
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for each unit. Other than population, the total volume of in-flow or out-flow may also be 

used for defining the size threshold. The choice depends on its applicability to the 

locational measure. For example, a net migration rate represents the net-flow of a 

location normalized by its population, in which case it makes sense to make each 

neighborhood have a similar population.  

Let the population threshold be p. The neighborhood Ns of a location s is the 

smallest set of nearest neighbors that has a total population P(Ns) greater than p. 

Specifically, the neighborhood Ns for unit s is constructed with two steps: (1) initially, let 

Ns = {s} and sort all other units based on their distance to s; (2) the nearest neighbors are 

added to Ns until P(Ns) > p. The bandwidth for s is then the distance to the farthest unit in 

its neighborhood Ns.  

For cases where the population attribute does not exist or is inappropriate for the 

context of the analysis, alternative variables can be used to define neighborhood 

(bandwidth). For example, the in-flow entropy measure quantifies the diversity of flows 

that go into a location. Thus, it is appropriate to use the total in-flow to a neighborhood 

(excluding flows within the neighborhood) to define the bandwidth in calculating the in-

flow entropy measure. Similarly, for the out-flow entropy measure we may use the total 

volume of out-flows from a neighborhood to define the adaptive bandwidth.  

Figure 2.2 illustrates the bandwidth selection process with a simple data set. Let 

the population threshold p =100. Three nodes r, s, t are highlighted and their population 

values are P(r) = 15, P(s) = 40 and P(t) = 130. Since node t is sufficiently large, it forms 

a neighborhood by itself and thus no smoothing is needed. Nodes r or s need to add 
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neighbors to meet the threshold p. Following the procedure outlined above, we have Nr = 

{r, s, d, a, b, f, g, h} and Ns = {s, a, e, r, b, c}, with P(Nr)  = 110 and  P(Ns)  = 105. 

 

 

Figure 2.2: Illustration of the bandwidth selection process. 

The neighborhood Ns of a location s is the smallest set of 

nearest neighbors that has a total population P(Ns) greater 

than a given population threshold p, which is 100 in this 

example. The map shows the neighborhoods of three 

locations r, s, and t.  

 

Choosing the population threshold for determining bandwidth involves a tradeoff 

between over-smoothing and under-smoothing. On one hand, the bandwidth should be 

sufficiently large to avoid artifacts caused by small neighborhood and under-smoothing. 

On the other hand, if the neighborhood is too large, interesting local patterns may 

disappear. Smoothing results change in a predictable way with decreasing/increasing 

bandwidth, with larger bandwidths generating more smoothed result (we will show the 

experiments with different bandwidths in Section 2.5.4). For the county-to-county 

migration data of the U.S., we experimented with different population thresholds to 
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examine flow patterns at different scales and chose a population threshold of one million, 

which is about the population of a medium-sized metropolitan area. 

2.4.2 SMOOTHING FLOWS  

For a specific location s and its neighborhood Ns, s  Ns, we smooth the flows that go 

into or out of the neighborhood. Let Bs be the bandwidth. First, flows within Ns are 

temporarily removed, i.e., a flow is ignored if its origin and destination are both in Ns. 

Removing flows within the neighborhood is necessary because the entire neighborhood 

is considered as a single unit (i.e., location s) in calculating a network measure. Second, a 

kernel function is incorporated to weigh each flow from/to Ns based on the distance 

between s and the flow origin or destination (whichever is inside Ns). In other words, 

each flow to/from Ns is partially (according to its weight) considered as a flow to 

location s even if the flow does not directly involve s in the original data, which 

essentially reassigns weights to existing edges or adds new edges to location s.  

The most commonly used kernel functions include the uniform kernel, the 

Gaussian kernel and triangular kernel (Figure 2.3). Previous research and our 

experiments show that the smoothing results are not significantly affected by the choice 

of models (Bors & Nasios, 2009; Silverman, 1986). In this research, we have 

experimented with the above three models and report the results using the Gaussian 

kernel.  
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Figure 2.3: Three commonly used kernel functions. (A) Uniform: Wsi = 1 if dsi  Bs; else 

0. Bs is the bandwidth and dsi is the distance between location s and its neighbor i. (B) 

Gaussian: Wsi = exp (-(dsi/Bs)
2
) if dsi  Bs; else 0. (C) Triangular: Wsi = 1 - |dsi/Bs|, if dsi  

Bs; else 0.  

In Figure 2.4 we show an example of a smooth graph that includes the 

connections to/from a location s (in red) and its neighborhood Ns (gray circle). In 

addition to edges (a, s) and (s, k) that exist in the original data, the smoothed sub-graph 

for location s also has newly added edges (b, s), (c, s), (j, s) and (s, i), which will be 

included in calculating the location measure for s.  The value for the new “flow” (b, s), 

for example, is the product of the value of flow (b, e) and its weight Wse according to a 

chosen kernel model. Note that flows within Ns are ignored.   

 

Figure 2.4: An illustration of a smoothed sub-graph. Dashed lines are newly added 

edges. 
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2.4.3 CALCULATING A LOCATIONAL MEASURE 

Using the smoothed sub-graphs, it is straightforward to calculate a variety of network 

measures for the focal location, which are more stable (with less spurious variation) than 

those calculated without smoothing. Here we use the net migration rate and an entropy 

measure as two case studies to demonstrate the approach and evaluate its results. 

2.4.3.1 NET MIGRATION RATE 

Net migration rate is the difference between in-migration (in-flow) and out-migration 

(out-flow) of an area in a period of time, divided by the population of the area. Net 

migration rate is usually multiplied by 1000 to represent the number of migrants per 1000 

inhabitants. To obtain a smoothed net migration rate for a neighborhood, we smooth the 

flows for the neighborhood (as introduced earlier), calculate the inflow and outflow of 

the neighborhood with the smoothed graph, and then divide (inflow – outflow) with the 

total weighted population of the neighborhood of s, denoted by P(Ns). In other words, the 

same weighting is applied to both the flows and the population.   

2.4.3.2 ENTROPY 

The variation of flow volumes across the links to/from a location can provide important 

insights about the structure of the network and the characteristic of the location. Local 

entropy measures (Limtanakool et al., 2009) are often used for this purpose. Entropy of a 

location s (i.e., its neighborhood) is calculated using the formula in Equation 2.1:  

 

                        Equation 2.1: Entropy 
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where EIs is the Entropy Index of location s, xsj is proportion of flow sj in relation to the 

total flow connected to s, J is the total number of locations in the network, and n is the 

number of locations inside the neighborhood Ns. The maximum number of links that 

location s may have is J – 1 – n. EI measures the variation in the magnitude of 

interactions across the connections of a node. The index value ranges between 0 and 1. A 

small inflow entropy value indicates that the flows to the location vary greatly (with large 

flows from a few locations and small flows from elsewhere), whereas a large inflow 

entropy value indicates that a location receives similar amount of flows from all 

locations. Entropy can also be calculated for out-flows or all flows (inflow and outflow 

together).  

With the county-to-county migration data in the U.S., we calculate and map the 

smoothed net migration rate and the entropy measure for each county, which clearly help 

discover natural regions of attraction or depletion and a variety of structural 

characteristics that the original measures fail to reveal. Furthermore, our smoothing 

method make it possible to calculate measures for a subset of flows (e.g., flows of a 

specific age group), which are impossible to obtain without smoothing due to the small-

area problem.  

2.5 RESULTS 

2.5.1 SMOOTHED NET MIGRATION RATE  

In this section, we show the smoothed net migration rates and compare them to the 

original measures. For the county-to-county migration dataset of the U.S., we chose a 

population threshold of one million, which approximates the population of a medium-

sized metropolitan area. To enable comparison of the two measures, we used a custom 
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classification for both in which 0 was chosen as the critical midpoint and the Jenks 

natural breaks classification was applied separately to each side of the midpoint. A 

diverging color scheme is used to represent different value ranges, with red representing 

attraction and blue for depletion (i.e., negative net migration rate).  

The original net migration rates are shown in Figure 2.5, in which it is difficult to 

distinguish regions of attraction and depletion because of unstable values caused by the 

dramatic population differences among counties and the small-area problem in the data. 

On the contrary, the smoothed net migration rates (with a neighborhood size of one 

million population) shown in Figure 2.6 can clearly reveal the regions of attraction and 

depletion with differing magnitudes. For example, major attraction regions (i.e., those of 

darker red hues) include Florida, Arizona, Greater Las Vegas region, north-east outskirts 

of the Atlanta metropolitan area, counties surrounding Denver, Dallas, Houston and San 

Antonio, and the metropolitan counties in North Carolina. On the other hand, large 

metropolitan counties such as Los Angeles, New York City, Chicago and Miami and 

rural counties in Montana, North and South Dakota can be easily recognized as regions 

of depletion. The smoothing results also reveal contrasting patterns locally within 

metropolitan areas, such as Chicago, Denver, Washington D.C., Dallas and Miami, 

where the core metropolitan areas have a push effect on migrants while the counties 

surrounding these core metropolitan areas have a pull effect on migrants as a result of 

suburbanization and urban sprawl.
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Figure 2.5: Original net migration rates
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Figure 2.6: Smoothed net migration rates 
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2.5.2 SMOOTHED NET MIGRATION RATE FOR SUB-POPULATIONS 

Migration patterns of sub-populations such as different races, ethnicities or age groups 

are expected to be spatially and structurally different from each other. Locational 

measures for sub-population flows are even less reliable because of much smaller 

volumes of flows and small base populations. To illustrate the effectiveness of our 

approach to overcome this problem, we smooth the flows within each age group, 

calculate net migration rate with the smoothed flows and compare them to their original 

net migration rate results. After examining the smoothing results for each age group, we 

focus on two age groups, namely 20-24 and 25-29; because they have the highest 

mobility and distinctive migration patterns (we will explain this below in Figure 2.7). 

The original net migration rates for age groups 20-24 and 25-29 are shown in Figure 2.7 

and Figure 2.8. It is difficult to interpret both maps because of unstable measure values 

that have spurious variation.
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Figure 2.7: Original net migration rates for age group 20-24
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Figure 2.8: Original net migration rates for age group 25-29
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After we smooth net migration rates within each age group, we use box-plots of 

the smoothed measure results to give an overall understanding of migration behaviors for 

different age groups by comparing their distributions (Figure 2.9). One of the most 

interesting and contrasting patterns that can be observed in Figure 2.9 are those for age 

20-24 and age 25-29. On one hand, the age group 20-24 has a large number of outliers 

with very high positive net migration rates and a larger upper quartile with a median 

around 0. On the other hand, age group 25-29 has a lower median below 0, a larger lower 

quartile and some outliers with negative net migration rates. The migration flows within 

these two age groups are likely related to education and employment specific flows. 

From Figure 2.9, we may also observe patterns related to elderly migration (David A. 

Plane & Jurjevich, 2009; Andrei Rogers & Sweeney, 1998). For example, there are 

outliers that disproportionately attract migrants of age groups 55-75. We can map the net 

migration rates for each age group to further investigate the observed patterns. Due to 

limited space, we only show the smoothed results for age groups 20-24 (Figure 2.10) and 

25-29 (Figure 2.11). 

The smoothing results highlight distinctive patterns that agree with existing 

migration studies. For example, migration of students and young adults for education and 

employment purposes (Paul B. Slater, 1976; Whisler, Waldorf, Mulligan, & Plane, 2008) 

can be seen clearly in Figure 2.10 and Figure 2.11. While metropolitan areas attract age 

group 25-29 because of employment opportunities, places with a substantial number of 

universities attract age group 20-24. This divide can be seen in many places across the 

country. For example, in Texas, though the region surrounding Austin attracts age group 

20-24, there is an opposite tendency among age group 25-29 to move away from this 



www.manaraa.com

 

47 

 

region and possibly targeting the Dallas Metropolitan area. A similar pattern is also 

observed in Florida. Because of the presence of many university campuses, the region 

that includes counties around Tallahassee, Gainesville and Jacksonville in Florida attracts 

age group 20-24, whereas age group 25-29 migrate from this region, targeting the 

Orlando and Miami Metropolitan areas for jobs. Also, metropolitan areas including Las 

Vegas, Atlanta, Raleigh, Charlotte, Denver and Minneapolis also attract both of the age 

groups 20-24 and 25-29 

 

 

Figure 2.9: Box-plots of smoothed net migration rate results for age groups 

 

.
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Figure 2.10: Smoothed net migration rate for age group 20-24 
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Figure 2.11: Smoothed net migration rate for age group 25-29
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2.5.3 SMOOTHED ENTROPY 

In addition to discovering regions of attraction and depletion, it is also important to gain 

insight into the structure of flows. A variety of measures such as entropy (Limtanakool et 

al., 2009), Gini index (D. A. Plane & Mulligan, 1997) and coefficient variation (L. Long, 

E., 1988) could be used to measure the diversity of flow volumes among the links to/from 

a location. In this section, we use the inflow and outflow entropy measures to capture the 

differentiation of the magnitude between the links to/from each location. We also 

compare the smoothed entropy measures to their original measure results. We use the 

total volume of in-flow to determine the neighborhood in calculating in-flow entropy 

whereas we use the total volume of out-flow to determine the neighborhood in 

calculating out-flow entropy.  

To balance between over-smoothing and under-smoothing we heuristically chose 

100,000 as a threshold volume both for in-flow and out-flow values to determine the 

neighborhood for calculating in-flow and out-flow entropy measures. To enable 

comparison, we again use the Jenks natural breaks classification with a sequential color 

scheme, with darker colors of red representing low entropy values (which highlight 

spatially focused (targeted) flows) and darker colors of blue for high entropy values 

(which show more evenly spread flows to/from the other locations).  

The original inflow entropy and outflow entropy are shown in Figure 2.12 and 

Figure 2.13, respectively. Both maps are difficult to interpret because of large and 

spurious variation in measure values. Moreover, the entropy values correlate with size 

and, as a result, smaller counties have always relatively low entropy since they normally 

have much less links than larger counties (see Equation 2.1). Similarly, larger places tend 
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to have connections with many other places, and hence the entropy value is larger (i.e., 

more evenly spread). 

The smoothed inflow entropy values in Figure 2.14 represent distinctive and 

different patterns from their original unsmoothed measures. It is interesting to see that the 

low inflow entropy clusters (red color) center around a number of major cities (such as 

Atlanta, Houston, San Diego, Chicago, etc.) but exclude the urban counties at each 

cluster center. The low entropy values indicate that these places draw focused flows, i.e., 

major flows are from certain places. On the other hand, clusters of high entropy values 

(blue color) represent places that receive migrants in similar volumes from many 

locations (i.e., more evenly spread).  

From Figure 2.14, we also observe contrasting patterns within some regions. For 

example, while the core counties of the Chicago, Houston, San Antonio and Dallas 

metropolitan areas have high entropy values, the counties surrounding these metropolitan 

cores have low entropy values. This could potentially be explained by the tendency of 

metropolitan cores to attract migrants (especially young adults) in similar volumes from 

many places in the country as opposed to the tendency of the outskirts attracting migrants 

(e.g., families and retirees who prefer suburban lifestyle) from metropolitan cores 

disproportionately more than they attract migrants from other places.  
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Figure 2.12: Original in-flow entropy values. 
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Figure 2.13: Original out-flow entropy values.
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The overall extents of the clusters in the smoothed out-flow entropy map (Figure 

2.15) are similar to the ones in the smoothed in-flow entropy map. However, there are 

local differences between the clusters of in-flow and out-flow entropy values. For 

example, in the Dallas, Atlanta and Chicago metropolitan areas, we observe lower in-

flow entropy values for the periphery of some metropolitan areas and higher in-flow 

entropy values for the metropolitan cores. However, we observe the opposite of this 

pattern in the outflow entropy map where the cores of Dallas, Atlanta and Chicago 

metropolitan areas have lower out-flow entropy as opposed to the counties surrounding 

them. Thus, this pattern indicates that migrants leaving these cores are more targeted 

(focused) towards a fewer number of places in much higher volumes. In addition to these 

contrasting patterns, we observe that high outflow entropy clusters match the high inflow 

entropy clusters, indicating that migrants leaving these places do not target certain areas 

and migrants moving into these places come from many locations in similar volumes. 

2.5.4 SENSITIVITY ANALYSIS  

In this section we evaluate the sensitivity to population thresholds and compare the 

results of our approach (smoothing local network and then calculating the measure) and 

the conventional approach (calculating measures and then smoothing measures). Due to 

limited space we only present the sensitivity analysis results for smoothing net migration 

rate.   
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Figure 2.14: Smoothed in-flow entropy 
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Figure 2.15: Smoothed out-flow entropy
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In order to select an optimal population threshold (bandwidth) that reveals general 

patterns in the data and reduces the instability caused by small populations (X. Shi et al., 

2007), we experimented with a series of population thresholds using both the 

conventional smoothing approach and our approach. Both approaches use the same 

spatial kernel and the same bandwidth. We plot the variance of smoothed rates from both 

approaches using a series of population thresholds. 

Plot B in Figure 2.16 shows the total variance of the resulting rates, whereas Plot 

A shows the difference in variances between two consecutive thresholds. As expected, 

Plot B shows that variance decreases as population bandwidth increases. Our approach 

produces rates with less variance than the conventional result since the latter still uses the 

original instable rates caused by small base population. Although the general trend is that 

variance decreases with larger thresholds, Plot A reveals several thresholds where the 

variance reaches a local minimum, including 300k, 800k, 1 million and 1.5 million. 

Smoothing results at these different thresholds show patterns at different scale levels, 

from finer to coarser resolutions. In this paper, we only present the results with a 

threshold of 1 million, which approximates the population of a medium-sized 

metropolitan area. 

2.5.5 COMPARISON WITH CONVENTIONAL METHODS 

In addition to analyzing the sensitivity to population thresholds, we also compare our 

approach to a conventional smoothing approach using net migration rate and inflow 

entropy measures. Figure 2.17 shows the two results (conventional approach vs. our 

approach) for smoothed net migration rates of for all population. In order to allow 

comparison, both methods use the same bandwidth (i.e., one million) and the same spatial 
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kernel function (i.e., Gaussian). The overall patterns are similar in both maps. However, 

for the conventional approach the effect of small base populations can still be observed in 

many places such as the surrounding counties of Salt Lake City, UT, Albuquerque, NM 

and Houston, TX (Figure 2.17, Left), where smoothed rates are affected by the original 

unstable rates (see Figure 2.5) and the flows within the neighborhood. Our approach 

eliminates the effect of small base populations by treating the neighborhood as whole, 

removing internal flows, and calculating the measure based on smoothed network (Figure 

2.6 and Figure 2.17 (right)). 

 

 

Figure 2.16: The variance of smoothed net migration rates for a series of population 

sizes. (A) The difference in variance between two consecutive thresholds. (B) The 

total variance for each population size (threshold).  
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Figure 2.17: Comparison of conventional smoothing result (left) and our result (right) for net migration rates. The overall patterns are 

similar but there are significant local differences between the two results.  
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The effect of small base populations is more dramatic for the entropy measure, 

causing small areas to have very small entropy values due to the sparse flows to/from 

those areas. This can easily be seen in the original measure result as well as the 

smoothing result of the conventional approach (Figure 2.18, Left), which produces large 

clusters of low entropy values which are highly correlated with the presence of small 

counties and their unstable rates (see Figure 2.12). Our approach, on the other hand, first 

smoothes the network related to a neighborhood and then calculates its entropy measure. 

As such, our approach reduces the effect of the small-area problem and reveals spatial 

clusters of low inflow entropy values, indicating places that draw focused in-migration 

flows (Figure 2.18, Right), which is dramatically different from the result of the 

conventional approach.  Such differences also exist for smoothing the net migration rates 

of different age groups as shown in Section 2.5.2.  

2.6 DISCUSSION AND CONCLUSION 

Spatial interaction datasets with a relatively small number of observations for most 

origin-destination pairs suffer greatly from spurious data variations and as a result 

locational measures calculated for such datasets become unreliable. To demonstrate the 

usefulness of the approach, we smoothed the net migration rates for all migrants and for 

migrants of different age groups. We also smoothed in-flow and out-flow entropy 

measures (1) to show the applicability of our method to smooth network measures; and 

(2) to capture the variation in the magnitude of flows that each location has. The method 

can be used to smooth a variety of locational measures such as centrality, chi-square and 

flow efficiency.  
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Figure 2.18: Comparison of conventional smoothing result (left map) and our result (right map) for inflow entropy. The patterns 

are dramatically different. 
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It is important to note that a locational measure can only represent one aspect of 

the spatial and/or structural characteristics of a location in the network. More insight can 

be gained through analyzing the relationships between different measure results. For 

example, if we compare the results of smoothed net migration rate (Figure 2.6) and 

smoothed in-flow entropy (Figure 2.14), we could discover overlapping clusters such as 

the coincidence of high entropy clusters with clusters of high net migration rate in the 

east coast from Virginia to Florida in addition to the coastal areas in the east of New 

Orleans; and throughout most of the counties in the states of Arizona and Florida. The 

overlapping of these clusters could help reveal regions that attract migrants from diverse 

places (as oppose to places that only receive migrants from certain places). We limit our 

analysis scope since the goal is to present the new smoothing approach rather than carry 

out a comprehensive analysis of the migration dataset.  

We conducted a variance-driven sensitivity analysis to evaluate a series of 

population thresholds to examine their effect on smoothing result. The analysis showed 

that smoothing results are consistent in overall patterns. A large population threshold 

highlights global patterns such as at the national scale while a smaller threshold can 

better reveal local patterns. For example, a threshold of two million population shows the 

Southeast as a homogeneous region of attraction, whereas a threshold of 300,000 

population shows downtown Atlanta as a place of depletion and its surroundings as 

places of attraction.  

In this paper, we employed a domain-based approach and used population or 

inflow/outflow to select an adaptive bandwidth. For other types of spatial interaction data 

where an attribute such as population doesn’t exist or using a population-based threshold 
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is inappropriate for the context of the analysis, one can employ a data-driven approach to 

select a bandwidth based on the properties of the network. One potential approach is to 

employ a graph partitioning method (Guo, 2009) to discover community structures and 

natural regions (groups of spatially contiguous and strongly connected units). The size of 

the discovered regions can provide important information for determining the size of the 

neighborhood (bandwidth). Our experiments with different bandwidth values showed 

that the smoothing results are not sensitive to small changes in bandwidth and that results 

with different bandwidths usually reveal patterns at different scales.  
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CHAPTER 3  

MAPPING FAMILY CONNECTEDNESS ACROSS SPACE AND TIME
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2
 Koylu, C., Guo, D., Kasakoff, A., & Adams, J. W. (2014). Mapping family 

connectedness across space and time. Cartography and Geographic Information Science, 

41(1), 14-26. Reprinted here with permission of publisher.  
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3.1 ABSTRACT 

Understanding the structure and evolution of family networks embedded in space and 

time is crucial for various fields such as disaster evacuation planning and provision of 

care to the elderly. Computation and visualization can potentially play a key role in 

analyzing and understanding such networks. Graph visualization methods are effective in 

discovering network patterns; however, they have inadequate capability in discovering 

spatial and temporal patterns of connections in a network especially when the network 

exists and changes across space and time. We introduce a measure of family 

connectedness that summarizes the dynamic relationships in a family network by taking 

into account the distance (how far individuals live apart), time (the duration of 

individuals’ coexistence within a neighborhood), and the relationship (kinship or kin 

proximity) between each pair of individuals. By mapping the family connectedness over 

a series of time intervals, the method facilitates the discovery of hot spots (hubs) where 

family connectedness is strong and the changing patterns of such spots across space and 

time. We demonstrate our approach using a data set of nine families from the US North. 

Our results highlight that family connectedness reflects changing demographic processes 

such as migration and population growth. 

 

Keywords: space-time visualization, family connectedness, network measure, social 

network, family tree 
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3.2 INTRODUCTION 

The interaction between geography and social relationships has long been studied by 

researchers (Festinger, Schachter, & Back, 1963; Hägerstrand, 1976; Michelson, 1970). 

Due to the wide use of social networking applications (e.g., Facebook and LinkedIn) and 

genealogy applications (e.g., Family Search and Ancestry), large social networks with 

geographic information have become increasingly available. Using such data, recent 

studies have proposed new ways of quantifying relationships, some of which make use of 

geography to infer social interactions (Backstrom, Sun, & Marlow, 2010; Crandall et al., 

2010), while others examine how geography and migration (or movement) influence 

relationships between individuals (Onnela et al., 2011; Phithakkitnukoon et al., 2011). 

Understanding of how relationships (e.g., kinship, friendship) evolve across space and 

time is crucial for decision-making in various fields such as disaster evacuation planning 

and provision of care to the elderly. 

In a social network each individual is represented by a node and each edge 

represents the relationship between two individuals. The weight of an edge can be 

quantified in a variety of ways such as the degree of kinship in a family tree; co-

authorship in a scientific collaboration network; and the frequency of phone calls, text 

messages or emails exchanged in a communication network. A social network is dynamic 

because it evolves (changes) over space and time as individuals move (migrate), new 

individuals are added or removed, and relationships develop and change over time. In this 

paper, we use the term “dynamic geo-social network” to refer to a dynamic social 

network embedded in space and time. Understanding the changing aspects of a dynamic 
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geo-social network requires methods that can simultaneously account for the spatial, 

temporal and relational (network) dimensions of the network.  

In order to understand the dynamics of social networks embedded in geographic 

space, a variety of computational and statistical methods such as graph theoretical 

measures (Scellato et al., 2011), random graph modeling (Schaefer, 2012), factor analysis 

(Hipp et al., 2012), simulation (Butts et al., 2012), and regression analysis (Viry, 2012) 

have been introduced by studies in social networks. A similarity between these studies is 

that they consider geography as a background variable to interpret the results of network 

analysis. However, the methodologies introduced by these studies have limited capability 

in analyzing the spatial, temporal and relational aspects of dynamic geo-social networks.  

With the advancement of graph drawing algorithms, current methods of graph 

visualization ( Lewis, Gonzalez, & Kaufman, 2012; Patil, 2011) are effective in 

discovering network (connection) patterns, e.g., clusters of connected members, or 

commonalities between friends who share interests and groups in a social networking 

application. However, existing graph visualization methods are inadequate for 

discovering the spatial and temporal patterns in social networks. On the other hand, 

spatiotemporal visualization methods (G. Andrienko et al., 2010; Fyfe, Holdsworth, & 

Weaver, 2009) have been successfully applied to identify temporal variation of spatial 

patterns, which often do not adequately consider the network dimension (connections 

between individuals). Therefore, there is still a lack of methodology that can incorporate 

the relational aspect (sophisticated relations between individuals) of geographically 

embedded and time-varying social networks. 



www.manaraa.com

 

68 

 

We introduce a measure and mapping approach to analyze connectedness in a 

dynamic family network and its changing patterns across space and time. Our approach 

differs from the current methods in that it takes into account the time that each pair of 

individuals spend together, the distance that they live apart, and the strength of their 

relationship (e.g., the degree of kinship). To demonstrate the approach, we use a dataset 

of family trees derived from the published genealogies of nine families in the US North 

over a span of 300 years. The data also include information on migration of individuals. 

The remainder of the paper is organized as follows. First, we review the related work in 

the next section. We then introduce our data and describe our methodology in detail. 

Finally, we present the results and conclude with a summary and a discussion for the 

future research.   

3.3 RELATED WORK 

This article introduces a methodology to understand the spatial, temporal and relational 

(network) aspects of a dynamic geo-social network. A dynamic geo-social network 

evolves (changes) over space and time as the actors of the network move (migrate), new 

actors are added or removed, and relationships between the actors develop and change 

over time. We demonstrate our approach using a dynamic family network embedded in 

space and time. Previous approaches to analyzing geo-social networks span a variety of 

themes and methodologies. In this section, we review the studies that aim at bridging 

social network analysis and spatial analysis in certain aspects. 

3.3.1 COMPUTATIONAL AND STATISTICAL METHODS 

There are various studies on geo-social networks within the social network domain. For 

example, a number of studies (Daraganova et al., 2012; Lomi & Pallotti, 2012; Sailer & 
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McCulloh, 2012; Schaefer, 2012) used exponential random graph models to account for 

geographic embeddedness of individuals in modeling social networks and investigate the 

effects of social and spatial distance on the network structure. Doreian and Conti (2012) 

analyzed a set of empirical networks to understand how networks are shaped by social 

and spatial contexts using a variety of modeling strategies. Butts et al. (2012) conducted 

an exploratory simulation study to examine the influence of spatial variability of 

background population on the network structure and the social ties.  

Viry (2012) examined the relationship between spatial dispersion of personal 

networks, residential mobility and network composition by conducting regression 

analyses. Cho, Myers and Leskovec (2011) and Scellato et al. (2011) focused on online 

geo-social networks to describe the relationship between geography and social interaction 

using graph theoretical methods. Similarly, Radil et al. (2010) introduced a spatialized 

positional analysis to reveal spatial patterns of social relations. Hipp et al. (2012), and 

Mennis and Mason (2012) performed factor analyses to delineate neighborhood 

boundaries by taking into account the density of social ties and the physical distances 

between the members of a social network. A similarity between the studies that focus on 

geo-social networks in the social network domain is that they consider geography as a 

background variable to interpret the results of network analysis. However, the 

methodologies introduced by these studies have limited capability in analyzing the 

spatial, temporal and relational aspects of dynamic social networks.  

3.3.2 VISUALIZATION 

Alternative to modeling, graph theoretical and statistical approaches, network 

visualization methods have been developed to examine the dynamic nature of social 
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networks. Dynamic network visualization methods allow the discovery of complex 

patterns in a network over time using animation (network movies) (Moody et al., 2005) 

and “small multiple displays” (Robertson et al., 2008). The layout of a graph is 

constructed by a graph drawing algorithm which often places nodes (individuals) that 

have strong relationships closer to each other. To enhance the perception of changes in a 

sequence of graph layouts, a collection of methods are developed by considering 

additional criteria such as minimizing edge crossings and ensuring repeatability and 

stability (Bender-deMoll & McFarland, 2006). However, such graph layouts represent 

only the topological structure of the network while disregarding its geographic 

dimension.  

To incorporate a geographic dimension into the network space, a number of 

studies (Faust et al., 2000; Nag, 2009; Todo et al., 2011) mapped actors (people) based on 

their geographic location and drew edges between those actors using different width and 

color intensity to reflect relative strength of each relationship. However, a graph layout 

that positions nodes based on their geographic coordinates suffers from the visual 

cluttering problem. Moreover, with a relatively large network, it is difficult to perceive 

network structures that involve multiple dimensions (i.e., space, time, and social 

connections). Because social network data are highly dynamic, it is challenging to reveal 

how social relationships change across geographies and time by simply displaying a 

sequence of graphs.  

Alternatively, some studies (Luo et al., 2011; Onnela et al., 2011) introduced 

integrated approaches that use dynamically linked views of network space and 

geographic space and allow user interactions to demonstrate the interplay of topological 
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structure and geography. Discovering the interaction between geography and the network 

is useful in extracting micro-scale (individual level) patterns. However; there is also a 

need to summarize spatial, temporal as well as relational aspects of such networks in 

order to provide a general overview of the data. 

Hägerstrand (1976) introduced a space-time framework to conceptualize and 

represent human interactions over space and time. Adopting this framework, many 

spatiotemporal visualization approaches (e.g., space-time path, density surface, 

computational and interactive approaches) have been introduced (Aigner et al., 2011). 

The space-time path approach (Chen et al., 2011; J. Y. Lee & Kwan, 2011) identifies 

human activity patterns in a social network by visualizing individuals’ paths in a three 

dimensional surface. Alternatively, the density surface approach summarizes the activity 

patterns by a density surface which is represented with either an animated sequence of 

continuous surfaces (Rana & Dykes, 2003) or a three-dimensional surface of the space-

time continuum (Demšar & Virrantaus, 2010; Nakaya & Yano, 2010). Additionally, 

some computational and interactive approaches such as self-organizing maps (Agarwal & 

Skupin, 2008) have been used to identify temporal variation of spatial patterns.  

The space-time approach by Shaw et al. (2008), Fyfe et al. (2009) and Andrienko 

et al. (2010) examine geo-social interaction patterns across space and time, but it does not 

adequately consider the network dimension (connections between individuals). 

Therefore, there is still a lack of methodology that can incorporate the relational aspect 

(sophisticated relations between individuals) of geographically embedded and time-

varying social networks. Another challenge in analyzing geographically embedded and 

time-varying social networks is the small area problem, where a single node or 
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connection is often too small (with insufficient data) for deriving stable statistical 

measures. Koylu and Guo (2013) introduced a smoothing approach to mapping graph 

measures in geographic space. In this research, we introduce a different space-time 

smoothing or interpolation method for visualizing both network measures and social 

relations in space and time.  

3.4 DATA 

To demonstrate our approach, we use family tree data derived from published 

genealogies of nine families from the US North over a span of three hundred years. These 

books were compiled by family members with the help of professional genealogists. 

More information on migration has been added by linking the genealogies to the U.S. 

censuses using data from Ancestry.com. A series of demographic events (e.g., births, 

deaths, migrations) were coded from the genealogy, including the places where events 

had occurred. From these event locations and dates we can infer the migration paths of 

each individual in the families.  

For the simplicity of methodology presentation and result explanation, in this 

paper we only report the analysis results with the Chaffee family (Chaffee, 1909), which 

was selected over eight other genealogies on the basis of better temporal resolution and  

information on migration. The Chaffee family includes 1225 males descended in the male 

line from the founder who came to Hull, Massachusetts from England in 1635. All men 

born into the family up to 1860 were included along with all siblings of men born through 

1840. There were 2387 geo-coded moves and 856 distinct locations where the family 

members lived in 296 years.   
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The family data involve only males because women changed their names at 

marriage; they were more difficult to follow. Although life expectancy changed over 

time, it was largely due to changes in infant and child mortality (Kasakoff & Adams, 

2000). This study included only men who survived to at least age 20. If we included those 

who had died young, we might have biased the study towards families with high infant 

and child mortality. Life expectancy at age 20 was remarkably moved westward, albeit at 

greater and greater distances (Egerbladh et al., 2007).  

Information on moves comes from records of vital events. If an event occurred in 

a place where a person had not previously lived, the move was assigned at a date close to 

the vital event. Most moves occurred before the vital event and thus the dates are 

approximate. The most accurate move dates come from the child bearing years because 

this population had children approximately every two years. Also only about 65% of the 

men had death dates recorded in the genealogy. For the rest, the last date on record was 

considered a death date. The animation of the migration of nine families including the 

Chaffee (CFE) family in the U.S. can be viewed at the link: 

http://129.252.37.169:8400/flowvis/trajectories/index.html(Koylu, 2013a). 

3.5 METHODOLOGY 

We introduce a measure and mapping approach to analyze the relationships in a family 

network embedded in space and time. Given a space-time window, the measure 

quantifies the family connectedness of each individual, considering his/her kinship to 

other family members coexisted in the window, their geographic distances, and the time 

duration of their coexistences. We then interpolate the measure values for all locations, 

map a series of space-time windows to examine the changing dynamics of the family 

http://129.252.37.169:8400/flowvis/trajectories/index.html
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relationships across space and time. Specifically, the approach consists of three steps. 

First, the time dimension is partitioned into a sequence of time intervals. Second, within 

each time interval, we calculate the measure of family connectedness for each individual 

at each location where he/she was present, considering the closeness (the degree of 

kinship) of his/her connections he/she has within a geographic distance threshold and the 

temporal duration of each connection. Third, given the family connectedness value for 

each individual at each unique location within a time window, a surface of family 

connectedness is produced using a smoothing and interpolation method based on inverse-

distance weighting. In the following subsections, we introduce each of the steps.  

3.5.1 TIME INTERVAL 

To allow for a temporal analysis of connectedness in a family network, one can employ a 

data-driven approach such as sliding windows, top-down or bottom-up segmentation 

algorithms (Keogh et al., 2001; Warren Liao, 2005) to obtain time intervals. For our case 

study, we employed a domain-specific approach to partition time series data into equal 

intervals and reflect meaningful stages of the family tree data. Because some patterns 

may fall between time windows and not appear, we use a sliding window approach.  

In the family dataset, the minimum period needed for a connection (co-existence) 

to occur is one year. On average a man is 35 years old when a son is born and 20 years is 

nearly the smallest generation, i.e., the youngest a man might be when he has a son. Also, 

a period of 20 years divides the life course into meaningful stages: age 1-20 would be 

before marriage, child bearing should stop by age 60 (Adams & Kasakoff, 1984). So 

people in different 20 year windows should be in different life stages. Therefore, we 

partition the data into a time window (interval) length of 20 years. Theoretically, we can 
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move this 20-year window one year at a time to obtain a smooth time series. To reduce 

the size of time series (and data redundancy), we move the window 10 years each step. In 

other words, there is a 10-year (i.e., 50%) overlap between neighboring time windows.  

Figure 3.1 shows a sample subset of a family tree data to illustrate the measure 

calculation. The horizontal axis represents the time periods of individuals (i.e., 

grandfather A, father AA, uncle AB, uncle AC and son AAA) whereas the vertical axis 

represents the locations (i.e., Loc 1, Loc 2, Loc 3, Loc 4) of those individuals in those 

time periods. For example, AC lived in Location 3 between 1674 and 1700 whereas AB 

lived in Location 4 between 1672 and 1685, moved to Location 3 and lived there between 

1685 and 1700. Additionally, the solid vertical lines represent the beginning and the end 

of time intervals: 1675-1695 and 1685-1705.  

 

Figure 3.1: A sample subset of a family network. The horizontal axis illustrates time and 

the vertical axis represents unique locations (i.e., Loc 1, Loc 2, Loc 3, and Loc 4). An 

individual at a location is represented with a horizontal line with a beginning and an 

ending year. For example, AB1 refers to the period that AB lived at location 4 between 

1672 and 1685, whereas AB2 refers to the period that AB lived at location 3 between 

1685 and 1700.  
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3.5.2 FAMILY CONNECTEDNESS 

We argue that a potential spatial interaction between two individuals in a time period is 

often dependent on how close those individuals are to each other both in terms of their 

geographic and kin proximity. While we use geographic proximity to form a territory of 

potential spatial interaction for each individual, we conceptualize kin proximity by the 

closeness of the relationship (e.g., degree of kinship) between two individuals. Naturally, 

the potential for spatial interaction between individuals change across time as individuals 

move, new individuals are added or removed, and relationships develop and change over 

time. By taking into account the time-varying relationship between geographic and kin 

proximity between individuals, and the time duration of their co-existence, we introduce 

a measure of family connectedness as a proxy for potential spatial interaction. 

For each time window, we derive the territory of each individual by using a 

geographic distance threshold around his location at the time and then calculate the 

family connectedness of an individual by considering his geographic closeness, temporal 

overlapping and family relationship to other individuals within the territory. Figure 3.2 

illustrates the individual AA’s family connections that are determined by his territory 

(gray circle). We provide a discussion on how to determine the territory of individuals 

using the distance threshold in the following paragraph. While the nodes with labels 

illustrate connections of individual AA, empty nodes illustrate individuals that do not 

have any family relationship with the individual of interest. For the family tree data in 

this study, we define relationship as kinship and two individuals do not have a 

relationship if they are not members of the same family tree. For individual AA at 

location 2, he had five family connections, which are A, AAA, AC and AB (at two 
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locations, noted as AB1 and AB2) for the given time interval 1675-1695. Notice that, 

although individuals such as AD, AE, ADA and AF were from the same family with AA, 

they are not considered as connections because they lived outside the neighborhood 

buffer of AA.  

The choice of the distance threshold (bandwidth) and what constitutes a 

connection are two important decisions for determining potential connections of an 

individual at a location and time. To select an appropriate bandwidth, we evaluated the 

distribution of move distances over time. Figure 3.3 illustrates the box-plots of distances 

by time intervals. Migration was highly skewed towards shorter distances, as is always 

the case. Over time the longest distances increased but moves at such distances were 

relatively rare and overall median distance is approximately 60 km. Still these distances 

are much greater than they were in Europe (Pooley & Turnbull, 1998) where population 

density was higher and people were more apt to remain in their local areas and reflect the 

Westward expansion of the US population.  
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Figure 3.2: The potential connections of individual AA 

from the sample network given in Figure 3.1. The circular 

buffer illustrates the neighborhood of individual AA 

which is used to determine his/her potential connections. 

Nodes with labels within the neighborhood are potential 

connections of AA whereas empty node symbols and 

labeled nodes outside the neighborhood are individuals 

that are not connected to AA. A subscript (e.g., AB1, AB2) 

for an individual indicates his/her existence at each unique 

location given the time interval.  

 

Considering the temporal resolution of the data which is composed of recorded 

events from the late seventeenth century till the mid-twentieth century, increasing trend 

of migration distance could be attributed to what transportation medium was available for 

the given time period. Until the mid-nineteenth century when the first railway system was 

built in the northeastern states, traveling was limited to the capability of horse carriages. 

Along the railway lines the ability to travel long distances greatly increased. However, 
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horse carriage remained to be a major transportation medium. On average horse quality, 

terrain and weather conditions, a horse carriage was able to travel 32 - 64 km a day 

(Bogart, 2005). Assuming that a potential for a consistent spatial interaction is possible 

without moving homes, we chose 60 km as a threshold distance to identify potential 

connections for each individual. 

 

Figure 3.3: Distribution of move distances over time intervals. The median move 

distance is approximately 60km and there is an increasing trend of individuals 

moving greater distances over time.  

 

The second important decision is to determine what constitutes a connection 

between individuals in a family network. In this study, we define connection as kinship 

and we assume that two individuals are connected if they are from the same family tree. 
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Given the connections, we use Equation 3.1 to calculate each individual’s family 

connectedness at a specific time interval and a specific location 

 

         ∑                  

      

 

Equation 3.1: Family connectedness of an 

individual at a specific time interval and a 

specific location 

where         is the family connectedness for individual i at location r and in time 

interval t. Individual i may have more than one locations (one at a time) in the time 

interval. Nrt are family members within the neighborhood of the individual i’s location (r) 

and the time interval t;          is the duration of time that individuals i and j co-existed 

within the neighborhood of r and the time interval t;         is the kin proximity which 

describes the degree of kinship between the family members i and j.  

We use consanguinity (Leutenegger et al., 2011) to quantify the degree of kinship 

(relation) between the members of a family, which is widely used in law and genetics. 

Figure 3.4 represents a family tree of four generations where A is the ancestor of all 

members in the family. The relation among two people is called lineal consanguinity if 

one is descendant from the other such as the son and the father (e.g., A-AA), or the 

grandfather (e.g., A-AAA), and so upwards in a direct ascending line. The degree of 

lineal consanguinity is directly measured by the number of lines (e.g., edges in Figure 4) 

between the two family members. For example, father-son relations (e.g., A-AA, AAB-

AABA) are first degree; grandfather-grandson relations (e.g., A-AAA, AB-ABBB) are 
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second degree, and great grandfather-great grandson relations (A-AAAA, A-ABBA) are 

third degree.  

 

Figure 3.4: A sample family tree with four generations that descend 

from the ancestor A. The relation among two people is called lineal 

consanguinity if one is descendant from the other such as the son 

and the father (e.g., A-AA), or the grandfather (e.g., A-AAA), and 

so upwards in a direct ascending line. For people who descend from 

the same ancestor, but not from each other (e.g., cousins or uncles-

nephews), the relation is called collateral consanguinity.    

 

The relation between individuals who descend from the same ancestor, but not 

from each other (e.g., cousins or uncles-nephews) is called collateral consanguinity. The 

degree for collateral relationship is calculated by finding the common ancestor then 

counting the number of steps downwards to reach the two individuals. If one of the 

individuals is more distant (remote) to the ancestor, the number of steps to the more 

remote person determines the degree of consanguinity. For example, a relation between 

brothers (e.g., AA-AB, AAB-AAC) is considered as a first degree consanguinity since 

there is only one step from the father to each of them whereas an uncle-nephew relation 

(e.g., AA-ABA, AAB-AACA) is a second degree consanguinity because the nephew is 

two steps away from the common ancestor, and the rule of calculating the degree is 

extended to the more remote person of the collateral relationship. After determining the 
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degree of relation (consanguinity) between two individuals, we assign a kin proximity 

value to each relation by simply taking the inverse of the degree. For example, the kin 

proximity of a first degree relationship (e.g., father-son, brothers) is 1/1 = 1, whereas the 

kin proximity of a second degree relationship (e.g., grandparent-grandchildren, cousins) 

is 1/2 = 0.5, and a third degree relationship (e.g., great uncle/grandnephew: AA and 

ABBA) is 1/3 = 0.33, and so on.  

3.5.3 SPATIAL INTERPOLATION OF FAMILY CONNECTEDNESS 

The components of the measure, which are cumulative kinship and time for an individual 

at a location, are highly correlated with the presence of individuals that live within a close 

distance to that location. We discuss that more people living close by increases the 

chance of potential interactions, thus the correlation between the presence of individuals 

and the measure components is appropriate and does not necessitate normalization. As 

we are not interested in family connectedness as a cumulative measured quantity, we 

produce a geographically weighted average surface of family connectedness by using a 

spatial smoothing and interpolation method rather than a cumulative density surface of 

family connectedness. 

Given the family connectedness for each individual at each unique location within 

a time window, a surface of family connectedness is produced using a smoothing and 

interpolation method based on inverse-distance weighting (IDW). IDW assumes that each 

measured value has an influence on the prediction by applying weights that are 

proportional to the inverse of the distance between the prediction location and the 

measured data point. The equation for smoothing and interpolation method is given 

below: 
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Equation 3.2: The equation for 

smoothing and interpolating family 

connectedness 

where         is the interpolated value of family connectedness at location x in time 

interval t;     is the observations (existence of individuals at unique locations) within the 

neighborhood of x in time interval t;        
      is the family connectedness value for 

individual i at location r in time interval t;        is a weighting function based on the 

distance         from the location of the observation    to the unknown point x; p is a 

positive real number called the power parameter;    is a constant penalty weight added 

to each estimation to remove the edge effect (Lawson et al., 1999).  

We determine the neighborhood for each estimation point x by using the same 

distance threshold (60km) we used in the previous step to identify connections between 

individuals. Because there are many observations (the co-existence of individuals) at the 

same or close by locations, the traditional IDW creates an interpolated surface which is 

greatly influenced by the edge effect (Figure 3.5(a)).  After applying the penalty weight 

for locations with no or few observations the edge effect is removed (Figure 3.5(b)). A 

constant penalty weight does not have a significant effect on the estimation where there 

are many observed values by the estimation point; however, it does affect the estimation 

where there is a few or no observed points close by the estimation point. To balance 
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between over-smoothing and under-smoothing, we empirically chose a value of 0.1 for 

the constant weight   . 

 

Figure 3.5: The comparison of the traditional IDW (a) with the modified IDW (b). 

The edge effect is noticeable throughout the traditional IDW surface (a). By 

applying additional weight that penalizes locations with no observations or few 

observations, the edge effect is removed in the modified IDW surface (b). 

 

3.6 RESULTS AND DISCUSSION 

We produced 29 surfaces of family connectedness each of which corresponds to a 20 year 

time window. Each surface was produced using a constant divergent classification 

scheme to enable comparison between each time window. While blue hue illustrates 

places with low family connectedness (i.e., low potential for spatial interactions), red hue 

illustrates places where family connectedness is higher.  

The animations of family connectedness including all families and the Chaffee 

family can be viewed at the following link: 

http://www.spatialdatamining.org/familyconnectedness (Koylu, 2013b). For the 

simplicity of result explanation, in this paper we only report the analysis results with the 

Chaffee family, which was selected over eight other genealogies on the basis of better 

http://www.spatialdatamining.org/familyconnectedness
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temporal resolution and information on migration. Due to the limited space we only 

report a small subset of the time windows that we selected based on their relevance to 

historical events in chronological order.   

The surfaces of family connectedness from the first time window (1634-1654) to the time 

window of 1854-1864 illustrate the demographic and spatial expansion of a colonizing 

population. Colonization proceeded in spurts with a family member moving out of the 

settled area and then most of his descendants remaining in the new location for three 

generations before spawning new settlements. It takes many years in a new location for 

connectedness to peak.  

Before the American Revolution, the earlier window (Figure 3.6(a)), there is only 

a few individuals in the newly settled areas such as Scipio, Warren, Chittenden, 

Westminster and Berkshire. Sixty years later (Figure 3.6(b)), the core of the family stayed 

in the area between Woodstock and Becket while new hubs started to develop in 

Berkshire and Scipio as the family moved North and West after the Revolution. As 

compared to Chittenden and Westminster there were fewer individuals in Berkshire in 

1824-1844 but Berkshire became a stronger hub than Chittenden and Westminster.  

When the new hubs were created, it took several generations to achieve the degree 

of family connectedness of the places that had been settled by the earliest generations. 

Due to the new births and new migrations of close kin into the area, Berkshire was able to 

increase its strength as a family hub in the later periods (Figure 3.7).  
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Figure 3.6: Family Connectedness after the American Revolution: 1764-1784 (a), 1824-

1844 (b). 
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Figure 3.7: Family Connectedness throughout the process of urbanization (1844-1864) 

 

Family connectedness is a composite measure of shared time (co-existence of 

individuals in a neighborhood) and kin proximity (e.g., the closeness of their kinship). To 

better understand the relationship between shared time and kin proximity, one could 

decompose the family connectedness of an individual at a location and time interval 

(Equation 3.1) into its components of total shared time (Equation 3.4) and total kin 

proximity (Equation 3.5). We plot these components for two distinct time intervals (i.e., 

1764-1784 and 1844-1864) to capture the temporal variation of the relationship between 

time and kin proximity (Figure 3.8). Both components are correlated with and influenced 

by the presence of individuals at close by locations (i.e., 60km), thus time and kin 

proximity were highly correlated in both time intervals. The difference between the 
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intervals of 1764-1784 (Figure 3.8(a)) and 1844-1864 (Figure 3.8(b)) suggests that over 

time individuals spend more time in close by locations whereas the availability of kin in 

their territory stayed the same. This trend could partially be explained by increased co-

existence of individuals with distant kin. 

 

                         ∑        

      

   

   Equation 3.3: Total kin proximity  

 

                       ∑         

      

   

Equation 3.4: Total shared time  

 

 

Figure 3.8: Relationship between the total shared time and the total kin proximity 

(kinship) of each individual’s connections within a neighborhood in time intervals 1764-

1784 (a) and 1824-1844 (b). The vertical axis represents the total shared time whereas the 

horizontal axis represents the total kinship. 
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The contribution of kin proximity and the shared time to the measure result vary 

across space and time. For example, an area with high family connectedness might be a 

result of high shared time but low kinship due to the co-existence of a large group of 

distant relatives (e.g., cousins, 2
nd

 level cousins). In an opposite case, an area with high 

family connectedness might be a result of low shared time but high kinship because of 

the co-existence of close relatives (e.g., parent-children, siblings) in shorter periods of 

time.  

To examine the spatial variation of the relationship between shared time and kin 

proximity, we performed bi-variate local indicators of spatial association (LISA) 

(Anselin, 1995). Bi-variate LISA examines whether local correlations between values of 

a variable (e.g., time) at a location and those of its neighboring values of another variable 

(e.g., kinship) are significantly different from what you would observe under conditions 

of spatial randomness. For example, a significant low-high cluster means that low values 

of a variable such as shared time are significantly correlated with high neighboring values 

of another variable such as kin proximity.  

We are particularly interested in understanding contrasting patterns of kin 

proximity (kinship) and shared time, thus, in this article, we only report statistically 

significant associations with high kinship-low time, and low kinship-high time for the 

time intervals 1764-1784 (Figure 3.9(a)) and 1824-1844 (Figure 3.9(b)). In the early 

stages of the expansion (1764-1784) we observe a cluster of low time - high kinship 

values especially around Ashford whereas Rehoboth continued to be a location with high 

time and low kinship. In the later period after the American Revolution (1824-1844) the 
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family hubs located around Ashford still had low time but high kinship values but the 

spatial extent of the hubs became more dispersed.  

Moreover, we start to see the formation of new hubs around Scipio and 

Chittenden which have high time but low kinship values. Low kinship and high time 

associations occurred in especially Scipio and Chittenden because younger individuals 

which were distant relatives moved to these new hubs whereas patriarchs stayed around 

the old established hubs. On the contrary, we observe a contrasting pattern, high kinship - 

low time (red diagonals), around Berkshire in the later time period of the expansion 

(1824-1844). This is because Berkshire became an established hub as a result of in-

migration of close relatives and high presence of patriarchs.  

3.7 CONCLUSION 

We introduced a measure of family connectedness that summarizes the dynamic 

relationships in a family network embedded in space and time. The new measure is 

unique because it takes into account the duration of time that each pair of individuals 

spend together, the distance that they live apart, and the strength of their relationship 

(e.g., the degree of kinship). By mapping the relational aspects of a family network across 

space and time, our method facilitates the discovery of hot spots (hubs) where potential 

for spatial interaction between individuals is relatively higher across space and time.  

One aspect of social context that is often not considered by the studies that 

incorporate social network analysis and spatial analysis is the addition or removal of 

members (e.g., birth/death, entry/exit) of the network. Our work has shown that 

especially deaths of individuals (e.g. patriarchs) who link many others together can 

greatly affect family connectedness particularly in the locations where those individuals 
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Figure 3.9: High-low and low-high associations of shared time and kinship in time 

intervals 1764-1784 (a) and 1824-1844 (b). While red diamonds represent low shared 

time and high kinship, blue squares represent high shared time and low kinship. The 

contrasting associations of cumulative shared time and kinship vary across space and 

time throughout the spatial and demographic expansion of the population 
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live. The family dataset we analyzed had a very high rate of demographic increase as was 

characteristic of the US North at the time. If death rates were higher, presumably there 

would be fewer hubs or hot spots. In other words, hot spots would disappear much more 

quickly with those in Europe where death rates were much higher.  

We are studying potential, not actual, interaction and this is one limitation of our 

work. We do not have a measure of actual interaction that we could compare with the 

potential interaction we have described. But there are other historical data sets which do 

have such measures. One example would be data on witnesses to marriages or other 

events, which exist for several European countries in the past (Bras, 2011). Our measure 

could also be computed using current kinship networks and then compared with the 

actual interactions of family members obtained from questionnaires or by other means.      

We demonstrated our approach using a family tree dataset from a population that 

was growing and colonizing the Northern part of the U.S. This measure has demonstrated 

how important migration, birth, and death of individuals to family connectedness. In this 

study, we define relationship as kinship and assume that two individuals have a 

relationship if they are from the same family. Our methodology can readily be extended 

to develop a measure of social connectedness using other forms of relationships, such as 

friendship and co-workers.  

Depending upon the context of the social network, one can define the connections 

in any form of interaction and quantify those interactions in a variety of ways such as 

using the frequency of the shared content, common friends in an online social network; 

the number of email exchanges or meetings held together in a business network. In this 

regard, the voluminous data collected from social networking platforms such as Twitter, 
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Flickr and Foursquare and genealogy applications such as Family Search and Ancestry 

provide an excellent opportunity to study online social networks and family trees using 

our approach.
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CHAPTER 4  

UTILITY AND USABILITY EVALUATION OF FLOW MAP DESIGN
3
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3
 Koylu C. & Guo, D. (2014) Utility and Usability Evaluation of Flow Map Design. To 

be submitted to International Journal of Geographical Information Science. 
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4.1 ABSTRACT 

Flow maps are commonly used to depict the movement of phenomena between pairs of 

locations (origins and destinations) for the understanding and communication of flow 

data and patterns, such as locational and network characteristics. Existing research on 

graph visualization has developed measures of readability and aesthetics to assess the 

utility and usability of graph layouts in presenting node and network characteristics. 

However, there is a lack of research for empirical evaluation of flow map designs and 

their utility and usability. We designed a user evaluation to obtain knowledge on how 

map readers perceive information presented with flow maps, how design factors such as 

flow line style (curved or straight) and layout characteristics may affect flow map 

perception and users’ performance in addressing different tasks for pattern exploration. 

Specifically, our user testing compares four different layout settings in combination with 

two flow line styles, traditional straight line and Bézier curved flow line, in terms of 

users’ performance in addressing two tasks: identifying nodes with the highest inflow and 

outflow. We measured correctness, response time and perceived mental effort in 

completing each task. The statistical analysis of the test data showed that performance 

(correctness and response time) and perceived mental effort of participants varied 

significantly depending on the factors of design, task, layout and screen resolution. The 

findings of this study have important implications for iterative design, interaction 

strategies and further user experiments on flow mapping. 

 

Keywords: Flow mapping, usability evaluation, geovisualization, map reading 
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4.2 INTRODUCTION 

Both physical and intangible phenomenon such as people, commodities and information 

constantly move in the geographic space and create location-to-location networks 

(graphs) that are often referred to as spatial interactions. In a location-to-location 

network, each node represents a geographic location (or area) and a link represents an 

interaction between a pair of locations. For example, domestic freight shipments within 

the U.S. form a network of state-to-state commodity flows in which there are 50 nodes 

(states) and thousands of links (commodity imports/exports between states).  

Flow maps are commonly used and most intuitive to facilitate the understanding of flow 

patterns and the spatial context in a spatial interaction network. Studies in the graph 

visualization community (Ghoniem et al., 2005; Purchase et al., 1997) introduced 

measures of readability and aesthetics to assess the utility of graph layouts. There are also 

efforts (Alper et al., 2013; McIntire et al., 2012) to evaluate the effectiveness of weighted 

node-link diagrams. Such experimental studies provide important insights on how users 

understand visual graph drawings and have suggested various graph drawing principles 

such as minimizing edge crossings, maintaining large crossing angles, and obtaining 

symmetrical layouts.  

However, there is a lack of empirical evaluation of flow maps. The heuristics 

learned for general graph drawing can only give very limited guidance for flow map 

designs. A flow map layout is constrained by the geographic coordinates of nodes, which 

dramatically differs from non-spatial graph drawing (where nodes can be moved freely to 

enhance visual clarity). Moreover, there is a lack of experimental research that assesses 
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the extent to which users perceive and interpret flow maps based on different design 

characteristics.  

We introduce a user evaluation to obtain knowledge on how map readers perceive 

information presented with flow maps, and how design factors such as flow line style 

(curved or straight) and layout characteristics may affect flow map perception and users’ 

performance in addressing different tasks for pattern exploration. Specifically, our user 

testing compares traditional straight line flow maps with Bézier curved flow maps with 

four systematically varied layout settings based on two visual tasks: identifying nodes 

(locations) with the highest inflow and outflow. We measured correctness, response time 

and perceived mental effort in completing each task. To demonstrate the application and 

user experiment, we used an original commodity flow dataset in the U.S. from 2007. The 

remainder of the paper proceeds as follows. We introduce the related work on flow 

mapping, and evaluation methods in Section 4.3. Then, in Section 4.4, we describe our 

methodology and the experiment. We finally report and discuss the results obtained from 

the user experiment in Section 4.5. and 4.6. 

4.3 RELATED WORK 

4.3.1 FLOW MAPPING  

Slocum et al. (2009) identifies five kinds of flow maps: distributive, network, radial, 

continuous and telecommunications flow maps. We focus on distributive flow maps that 

depict flows using abstract links between locations rather than the precise routes of flows. 

The term flow map is interchangeably used to refer to distributive flow map in the 

remaining of this paper. In the next sub-section, we discuss design issues regarding 
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distributive flow maps. Design issues regarding other types of flow maps can be found in 

(Parks 1987; Slocum et. al. 2009). 

4.3.1.1 DESIGN 

In a flow map, a flow is often depicted as a straight or curved line connecting an origin to 

a destination. The color and/or width of each line can be used to represent the volume of 

the flow. The directionality of a flow is commonly displayed using arrows and the right-

hand traffic rule that draws a flow line on the right side while the line is pointing to its 

destination (Guo, 2009). To reduce visual cluttering caused by overlapping arrows and 

lines, a number of strategies such as edge ordering, minimizing overlap with arrows, 

adjusting vertex positioning to optimize angular resolution and edge crossings can be 

employed (van de Ven, 2007). Two divergent colors can be used to distinguish the origin 

and destination of a flow line (Boyandin et al., 2010; Fowler & Ware, 1989). Bézier 

curves can also be used to draw flow lines where each line is curvy at the origin and 

straight on the destination end. Cognitive studies in information visualization (Ware, 

2013) suggest that visual processing of line curvature is weaker than factors such as 

color, orientation and size. However, as compared to straight edges, the use of curved 

edges would lead to improved interpretation of the relational information since curvature 

produces wider angles between edges and the relations (connections) become more 

visible (Purchase et al., 2013). Xu et al. (2012) studied the impact of edge curvature on 

graph readability and found that uniform edge curvature had a detrimental impact on 

graph readability and this negative effect increased with curvature level. This paper 

compares traditional straight line flow maps with Bezier curved flow maps on different 

layout characteristics and tasks. 
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4.3.1.2 APPLICATIONS 

Tobler (1987) was the first one to develop a flow mapping application. Tobler’s original 

software was later updated to an interactive application that included new features such 

as colored and scaled arrows, two-way flows and a setting to control the movement 

volume to be shown (W. Tobler, 2004). Yadav-Pauletti (1996) developed a migration 

mapping software that utilized animation with small multiples to depict migration flows 

over time. Similarly, Thompson and Lavin (1996) developed an application to automate 

the generation of animated vector field maps. Phan et al. (2005) developed a flow 

mapping application that bundles edges to minimize edge crossings using a hierarchical 

clustering method. Using node clustering and flow aggregation, Boyandin et al. (2010) 

introduced an interactive application to analyze temporal changes in migration flows. 

Boyandin et al.’s (2010) application supports user interactions such as flow and node 

highlighting, selection and dynamic queries for filtering out flows by their volume and 

length. Using multiple linked views of a flow map, a self-organizing maps and a parallel 

coordinate plot, Guo (2009) introduced an interactive and integrated flow mapping 

framework to discover community structures (natural regions), identify multivariate 

relations of migration flows, and examine the spatial distribution of both flow structures 

and multivariate patterns.  

4.3.2 EVALUATION METHODS 

4.3.2.1 GEOVISUALIZATION 

Traditional testing methods under controlled conditions are not suitable for evaluating 

geovisualization tools because of the exploratory nature of visualization and it is hard to 

define effectiveness or “success” for an exploratory task (Demsar, 2007). There are two 
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alternative approaches to evaluating a visualization tool: the insight-based approach and 

the objective-based (visual tasks) approach. The insight-based approach (Chang et al., 

2009; North, 2006) captures and grades individual observations about the data or 

visualization by the participant as an insight, a unit of discovery. On the other hand, 

visual tasks are derivatives of basic visual operators such as identify, compare, associate, 

etc., and were first introduced by Wehrend and Lewis (1990). Several studies (Aufaure-

Portier, 1995; Davies, 1995; Knapp, 1995; Roth, 2012) decoded the exploration process 

into objectives (e.g., identifying clusters in the data, finding relationships between 

elements, comparing values at different locations and distinguishing spatial patterns, 

identifying spatial positions of objects, their spatial distribution and density, etc.). Many 

studies (Demsar, 2007; Koua et al., 2006; C. Tobon, 2005) performed experiments to 

evaluate the utility and usability of geovisualization tools using the objective-based 

approach. Additionally, a number of studies (Fowler & Ware, 1989; Laidlaw et al., 2001; 

Z. Liu et al., 2012) evaluated the effectiveness of the visualization techniques for 

displaying particles as vector fields. 

4.3.2.2 GRAPH VISUALIZATION 

Although an empirical evaluation of flow mapping has not been explicitly addressed in 

the geovisualization community, many studies in graph visualization (Dwyer et al., 2009; 

Ghoniem et al., 2005; Purchase et al., 1997; Ware et al., 2002) examined how aesthetics 

such as edge crossings and symmetry impact the performance of graph reading tasks in 

unweighted graphs. Additionally, some studies utilized eye-tracking (Huang, 2007; 

Körner, 2011) to understand graph perception. The findings of the experiments (Battista 

et al., 1999; Purchase et al., 2002) on the evaluation of graph drawing algorithms provide 
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important insight into users’ understanding of graphs and suggest various graph drawing 

heuristics such as minimizing edge crossings and the ratio between the longest edge and 

the shortest edge; and satisfying some aesthetics criteria such as revealing symmetries. 

While following such heuristics ease the comprehension of graphs, flow maps can benefit 

from these rules in a limited manner because of fixing of nodes based on geographic 

coordinates.  

Ghoniem et al. (2005) compared the performance of matrix-based representations 

and node-link diagrams on a number of tasks and showed that matrix-based visualization 

outperforms node-link diagrams when graphs have more than twenty nodes. However, 

node-link diagrams were still found to be effective in path finding tasks. Alper et al. 

(2013) and McIntire et al. (2012) analyzed the performance of node-link diagram and 

adjacency matrix for comparing two weighted graphs. Findings of their studies show that 

matrix representation outperforms node-links for graph comparison tasks, especially 

when the graph is dense or large. McGrath et al. (1997) conducted an experiment to 

understand how spatial properties of the graph layout affect the viewer’s perception of 

the graph when structural features were held constant. Similarly, in order to evaluate how 

spatial arrangement of the layout influences graph perception, we produced four layouts 

from the same dataset by swapping the positions of nodes while keeping the flow 

structure as constant.  

A graph layout may improve aesthetics, however it does not ensure understanding 

(Bennett et al., 2007). To address the problem, measures of mental effort and 

visualization efficiency have been introduced to better understand the perception of 

graphs using the cognitive load approach (Paas et al., 2003). Huang, Eades and Hong 



www.manaraa.com

 

102 

 

(2009) further developed a measure of visualization efficiency which is the difference 

between cognitive cost (i.e., mental effort and response time) and cognitive gain 

(response accuracy). According to the definition of visual efficiency, high efficiency is 

gained with high accuracy and low mental effort and a short response time, whereas low 

efficiency occurs when low accuracy is associated with high mental effort and a long 

response time. In this experiment, we measure mental effort using subjective ratings of 

the participants in addition to response time and accuracy of each given task.  

4.4 METHODOLOGY 

This paper introduces a user evaluation to obtain knowledge on how map readers 

perceive information presented with flow maps. Given the large number of alternatives 

for flow map design and flow map reading tasks, it is challenging to choose design 

elements and tasks for the evaluation of flow maps. In order to finalize the experimental 

factors, we conducted a series of prior experiments and cognitive walkthroughs on the 

elements of flow map design such as line style, width, color, and arrow size; background 

map, and dataset (layout); and flow map reading tasks. In our final experiment which we 

report in this paper, we evaluate two factors of flow map design: flow line style and flow 

map layout based on a set of visual tasks. In the following sections, we introduce the 

experimental factors, research questions, participants and procedure. 

4.4.1 EXPERIMENTAL FACTORS 

4.4.1.1 DESIGN 

Previous studies in graph visualization showed that curved edges are easier to interpret as 

they produce wider angles between edges and the connections become more visible; 
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however, there is a lack of experimental research on how line styles such as straight and 

curved edges influence flow map perception. To obtain information on how different line 

styles facilitate the comprehension of network and node characteristics in a flow map, our 

particular focus is on the utility and usability of traditional straight-line flow maps with 

Bezier curved flow maps. We evaluated the alternatives for the symbolization of color 

and line width by using an interactive application: http://tinyurl.com/lbv464d (Koylu, 

2014a). To encode the volume of flows, we used redundant symbolization with a 

sequential classed color scheme and proportional line width. We used partial arrows to 

delineate the direction (destination) of flow lines and each flow line follows the right-

hand traffic rule: a flow line is drawn on the right side while pointing to its destination.  

4.4.1.2 LAYOUT 

As a result of being constrained by geographic coordinates of nodes, flow map layout 

suffers from the visual complexity induced by the number of flows, flow lengths, and 

crossings. However, there is a lack of experimental research that examines the effect of 

layout characteristics on flow map perception. To understand how different layout 

characteristics influence the perception of flow maps and account for any bias that would 

be introduced by a particular layout and participants’ knowledge of the geography, we 

designed the experiment with four layouts that we derived from an original commodity 

flow dataset: the flows of alcoholic beverages by their weight in tons, collected by the 

Commodity Flow Survey (CFS) in 2007. We chose this dataset because it exhibits 

distinctive patterns of high import and export states with few high volume links and many 

low and medium volume links. All commodity flow datasets can be viewed at the 

following link: http://tinyurl.com/lbv464d (Koylu, 2014a). 

http://tinyurl.com/lbv464d
http://tinyurl.com/lbv464d
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The four layouts consist of the original layout, and three fictionalized layouts 

created by systematically swapping coordinates of locations while using the identical 

network. We designed the fictitious layouts based on spatial arrangement of the most 

prominent nodes and larger volume flows with varying degrees of flow length and 

crossings. Figure 4.1 illustrates the four layouts with the two design alternatives: curved 

and straight flow layouts. In Figure 4.1, we ordered the layouts such that the number of 

edge crossings and total flow length increase from top to bottom: Layout 3, Layout 1, 

Layout 2 and Layout 4. Table 4.1 illustrates layout characteristics such as number of edge 

crossings, total flow line length and mean crossing angle. Layout 1 is the original layout 

of the dataset. Layout 1 suffers from edge tunneling effect (Dunne & Shneiderman, 2009) 

caused by overlapping flows from/to close by nodes. We designed Layout 2 so that the 

most prominent nodes and larger volume flows are at the periphery of the layout and 

there are no edge crossings among the highest-volume flows (dark purple). This layout 

resulted in fewer crossings of edges in general, and longer flows. Layout 3 was produced 

to keep the most prominent nodes at the center of their connections with no edge 

crossings within the highest volume class (similar to Layout 2). Layout 3 has the fewest 

number of edge crossings and the shortest total flow length (different from Layout 2). We 

designed Layout 4 so that most prominent nodes are around the periphery and there are 

edge crossings with the highest volume class. Layout 4 has more edge crossings and the 

longest flows. 

4.4.1.3 TASK 

Flow map reading is a challenging task as it involves visual judgment of node (location 

or area), link (flow) and network characteristics. The basic elements of flow map reading 
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involve cognition of link properties such as magnitude, orientation, direction and 

distribution of connections (Ware, 2013). For a comprehensive evaluation of flow map 

reading, there is a need to construct a typology patterns and visual tasks. Similar work 

has been done in movement pattern analysis (Dodge, Weibel, & Lautenschutz, 2008), 

group level comprehension in graphs (Saket, Simonetto, & Kobourov, 2014) and task 

taxonomy for graph visualization (Brehmer & Munzner, 2013; Lee et al., 2006). 

Given the large number of possible flow map reading tasks, it is challenging to 

select tasks for the evaluation of flow maps. In this study, we focus on the comprehension 

of location (node) prominence in flow maps. Location prominence is often described and 

measured by degree-based centrality measures such as degree-centrality, betweenness, 

closeness and eigenvector; and volume-based measures such as total flow (strength), 

inflow, outflow and net flow. Such measures have been widely studied in analyzing a 

variety of spatial networks such as migration (Koylu & Guo, 2013; Andrei Rogers & 

Raymer, 1998; C. Roseman & McHugh, 1982), commodity flows (Celika & Guldmann, 

2007; Smith, 1970), and airline networks (O'Kelly, 1998).  

We used the following criteria to select the appropriate tasks for evaluating the 

understanding of patterns in a flow map. First, the tasks should easily be explained to a 

participant without any knowledge of flow maps or graphs. Second, each task should be 

unique and not involve similar sub-tasks. Third, the tasks can be completed in a 

reasonable amount of time. Based on these criteria, we chose two tasks to identify 

location prominence: identifying locations with the highest total inflow, and the highest 

total outflow. In our prior tests we also included highest positive netflow and highest 

negative netflow. However, these tasks were hard to perform due to comparing inflows 
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and outflows; involved similar sub-tasks with inflow and outflow tasks; and resulted in 

excessive response times and poor response accuracy. Thus, we removed netflow tasks in 

the final experiment that we report in this paper. To fit the context of the commodity 

dataset in the experiment, we used the terms import and export rather than inflow and 

outflow. Below are the two tasks: 

- Select the top three importers (i.e., states) with the highest total volume of 

imports.  

- Select the top three exporters (i.e., states) with the highest total volume of exports.  

A specific instruction and a hint were given to help answer each question.  

4.4.2 RESEARCH QUESTIONS 

The overall goal of the evaluation was to obtain knowledge on map readers’ perception of 

information presented with flow maps, how design factors such as flow line style (curved 

or straight) and layout characteristics; and tasks of pattern exploration influence flow map 

perception. Our major research questions were:  

- Which type of design, curved or straight line style better assist in facilitating the 

comprehension of the network and node characteristics, more specifically 

understanding location prominence?  

- How do layout characteristics such as total flow length, edge crossings, crossing 

angles influence the performance (correctness and response time) and perceived 

mental effort?  

- How is user performance affected by the type of task? 

- How does perceived mental effort vary across different combinations of design, 

layout and task? 

- How do the factors of design, layout and task interact with each other and affect 

the performance and perceived mental effort?  

- What other factors could potentially exist to explain variations in the performance 

and perceived mental effort? 
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Figure 4.1: Flow map layouts: Straight design (left), curved design (right). Each layout 

displays the identical network of commodity flows. The total flow length and the number 

of edge crossings increase from top to bottom, whereas mean crossing angles vary 

between the layouts. Layout 1 is the original layout of the commodity flow dataset, 

whereas Layout 2, 3 and 4 were produced by swapping locations of nodes in the original 

network.  
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Table 4.1: Layout Characteristics 

  Edge Crossings Total Flow Length Mean Crossing 

Angles  

  (count) (in pixels) (0 < α < 90) 

  Curved Straight Curved Straight Curved Straight 

Layout 1 52 32 12437 12364 37.69 45.47 

Layout 2 120 93 15343 15199 48.11 42.67 

Layout 3 43 32 10060 10046 47.2 43.47 

Layout 4 149 136 18562 18339 50.25 44.63 

 

4.4.3 PARTICIPANTS 

To obtain a general overview of flow map comprehension, we intended to recruit 

participants with diverse backgrounds and expertise. Increasing number of studies has 

proven the usefulness of online crowdsourcing services for conducting usability 

experiments (Kinkeldey et al., 2013; Mason & Suri, 2012; Paolacci, Chandler, & 

Ipeirotis, 2010). Following this trend, we used Amazon Mechanical Turk (AMT) 

crowdsourcing service (https://www.mturk.com) to recruit participants. We paid each 

participant 50 cents to conduct the test that took 15 minutes on average. To ensure 

motivation, we required the participants to have greater than 5000 approved hits with a 

98% hit approval rate.  

202 volunteers (136 male, 66 female) participated in the test. The ages of the 

participants were between 19 and 69, and the average age was 33. The majority of the 

participants declared to have a college (41%) and graduate degree (39%), whereas there 

were participants with a high school degree (19%) and a degree with less than high 

school (1%). Most participants were from the United States (67%) and India (29%). We 

did not observe a significant difference between the performance and country. The 

majority of the participants stated that they had never seen a flow map or they did not 

https://www.mturk.com/
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know what a flow map was (67%), whereas 33% said they had seen a flow map. 58 % of 

the participants stated (i.e., agree and strongly agree) that they understand what a flow 

map represents. The majority (92%) of the participants use computers more than 3 hours 

a day. Most of the participants (93%) use maps regularly (e.g., Google Maps) and feel 

comfortable about using online mapping services 

4.4.4 PROCEDURE 

We employed a user-centered design and iteratively improved both the flow map design 

and experiment. We conducted three experiments with a variety of layouts, tasks and 

design alternatives for flow mapping. However, in this paper, we only report the results 

of the final experiment due to the limited space. We measured correctness of response, 

response time, and mental effort; collected user feedback and recorded screen resolution 

and interface events. The test is made available to the public using the following link: 

http://tinyurl.com/ksxsqvl. Participants can take the test using a personal computer at any 

location and time. Participants are first prompted with an instruction window that briefly 

describes interactive flow mapping and the online system that would be used by the 

participant. To reduce the cognitive load induced by instructional materials, we kept the 

instructions as short as possible. The test included 20 questions in which only 8 questions 

require participants to complete tasks using flow maps while the rest are background and 

follow-up questions to gauge user reactions to the test and given flow maps.  

To avoid learning effects, we randomized the order of questions first by task then 

by layout and made sure each permutation is taken equal times before a repeating 

permutation is assigned to a new participant. We specifically kept the questions of the 

same task together in order to alleviate the confusion that may result from switching back 

http://tinyurl.com/ksxsqvl


www.manaraa.com

 

110 

 

and forth between the different task types. The same ordering procedure was applied to 

both curved and straight designs separately. There was no time limit to answer any of the 

questions. The whole session took about 15 minutes on average.  

The test interface detects screen heights narrower than 900 pixels and adjusts the 

zoom level of the map component to depict the whole layout on the screen which results 

in a smaller depiction of flow maps. Overall, 64 % of participants had smaller screen 

height (<900), whereas 36% had larger (>=900). Table 4.2 illustrates the number of 

participants that were assigned curved and straight flow maps and their screen 

resolutions. Participants with a smaller resolution were approximately equal for curved 

(64) and straight (65) designs. To account for the variation in performance and perceived 

mental effort, we included screen resolution as a factor in analyzing the test data.  

 

Table 4.2: Number of participants by screen resolution and design type 

 Curved Straight 

Large 37 36 

Small 64 65 

4.5 RESULTS 

We organized the analysis of the test data according to the usability metrics measured in 

the experiment: correctness, response time, perceived mental effort and user reactions. To 

account for the performance variation due to screen size, we considered screen resolution 

(height) as a factor in our statistical analysis of the results. We conducted a detailed 

analysis of the test data using a mixed design analysis of variance (ANOVA) with two 

between-subjects factors: design (2 levels) and screen resolution (2 levels); and two 
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within-subjects factors: task (2 levels) and layout (4 levels). Additionally, we provide two 

online applications to view (1) each participant’s responses: http://tinyurl.com/ppy86z7 

(Koylu, 2014c); and (2) cumulative response patterns: http://tinyurl.com/p7j5nbx (Koylu, 

2014b). 

4.5.1 CORRECTNESS 

To answer each flow map question, participants selected top three nodes with either the 

highest total inflow (import) or outflow (export). To calculate the correctness of an 

answer, we divide the cumulative inflow/outflow volume of the participant’s selections 

(e.g., add up the selected three nodes’ total volume of inflow or outflow based on task) by 

the cumulative inflow or outflow volume of the actual top three nodes (e.g., add up the 

actual top three nodes’ total volume of inflow or outflow based on task). As a result, 

values of correctness range from 0 to 1.  

Correctness data are illustrated using asymmetric beanplots in Figure 4.2 which 

allow comparison of distributions by design, layout and task types. The black and grey 

areas depict the density trace of each distribution whereas the lines within the density 

areas serve as a histogram to illustrate the frequency of observations on a particular score. 

Means of each distribution are displayed using red lines, and the overall mean for each 

layout is displayed using a dashed line. We ordered the beanplots first by layout, then by 

task to be able to compare the main effect of design, and how it changes depending on 

different choices of task and layout. The presence of a bimodal distribution indicates a 

major split between the participants’ answers whereas a single peak shows similar 

answers; and a uniform distribution shows a diverse range of answers. Curved flow maps 

consistently resulted in negatively skewed distributions with a single peak which 

http://tinyurl.com/ppy86z7
http://tinyurl.com/p7j5nbx
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highlights higher accuracy on import tasks. On the other hand, straight design produced 

relatively more uniform distributions on import tasks, which indicates a diverse range of 

performance scores. Both curved and straight designs produced bimodal distributions for 

export task except Layout 2 with curved design which produced a single peak.  

 

 

Figure 4.2: Asymmetric beanplots for correctness by flow map design. Red lines show 

the mean of each distribution whereas dashed lines illustrate the mean for each layout. 

The presence of a bimodal distribution indicates a major split between the participants’ 

answers whereas a single peak shows similar answers; and a uniform distribution shows a 

diverse range of answers. 

 

Further analysis of the correctness of response measure was conducted using a 

mixed design ANOVA with two between-subjects factors: design (2 levels) and screen 

resolution (2 levels); and two within-subjects factors: task (2 levels) and layout (4 levels). 
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As the residuals violate the assumptions of normality and homogeneity, we applied 

arcsine transformation to normalize the proportional data of correctness and stabilize the 

variance in residuals prior to the statistical analysis. For correctness, the statistical results 

confirmed that all four main effects, design (p < 0.001), screen resolution (p < 0.01), task 

(p < 0.001) and layout (p < 0.001) were statistically significant. Also, the results 

indicated three significant interactions: design and resolution (p < 0.05); task and layout 

(p < 0.001); and design and task (p < 0.05).  

The interaction between screen resolution and design (Figure 4.3) showed that 

participants’ performances were significantly lower when they were assigned straight 

flow maps on a small screen resolution (screen height < 900). On the other hand, 

performance of curved flow maps did not have a significant difference between small and 

large screen resolutions. We could attribute consistently high performance of curved 

design regardless of the screen resolution to the use of two visual clues (line curvature 

and arrows) for direction and more clear separation of flow lines between every pair of 

nodes. The interaction between layout and task (Figure 4.4) suggests that participants 

performed well with Layout 1 and Layout 4 for both tasks, whereas Layout 2 and Layout 

3 led to decreasing accuracy on export task. We further analyze the potential reasoning 

behind this interaction in section 4.5.4. Finally, the interaction between design and task 

indicates a substantial increase in accuracy when participants were assigned an import 

task (as opposed to an export task) on a curved design. 
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Figure 4.3: Significant interaction between design and screen resolution 

showed a clear association between small screen resolution and lower 

accuracy when using straight flow maps.  

 

 

Figure 4.4: Significant interaction between layout and task for 

correctness. Both import and export task resulted in similar accuracy when 

the users performed tasks on Layout 1 and Layout 4, whereas accuracy 

was lower when participants were given an export task on Layout 2 and 

Layout 3.  
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Figure 4.5: Significant interaction between task and design for 

correctness. Although the difference in the accuracy of curved and straight 

design is an outcome of the screen resolution, accuracy substantially 

increased when participants were assigned an import task (as opposed to 

an export task) on a curved design.  

 

4.5.2 RESPONSE TIME 

Participants’ response times are illustrated using asymmetric beanplots ordered by 

design, layout and task (Figure 4.6). Unlike the correctness of response, response times 

for curved and straight flow maps were similar, whereas participants performed export 

tasks substantially faster than import tasks. To meet the assumptions on the normality and 

homogeneity of residuals, we applied logarithmic transformation prior to conducting the 

ANOVA. The statistical results of the mixed model ANOVA confirmed significant main 

effects of task (p < 0.001) and layout (p < 0.001), whereas design (p = 0.828) and 

resolution (p = 0.459) were not found to be significant. Layout and task was found to be 
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the only significant (p < 0.05) interaction effect (Figure 4.7). Import tasks required more 

time than export tasks, and the average time spent on an import task varied depending on 

the type of layout.  

 

 

Figure 4.6: Asymmetric beanplots for response time (in seconds) by flow map design. 

Red lines show the mean response time for each distribution whereas dashed lines 

illustrate the mean response time for each layout. Unlike the correctness, response times 

for curved and straight flow maps are similar, whereas an export task is performed 

significantly faster than an import task. 
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Figure 4.7: Significant interaction between layout and task for response 

time (in seconds). Import tasks required more time than export tasks, and 

the average time spent on an import task varied depending on the type of 

layout.  

 

4.5.3 MENTAL EFFORT 

Participants reported their perceived mental effort after each flow map question using a 

9-point Likert scale which we treated as a continuous variable. The results of the 

ANOVA indicated that the differences among large and small screen resolution was 

highly significant (p < 0.001) whereas the factors of design, layout and task were not 

found to have a significant effect on perceived mental effort. None of the interactions 

between the factors were significant.   

To gain more insight into perceived mental effort, we illustrate the interactions 

between task and design, and layout and task. Task and design interaction in Figure 4.8 

shows a substantial decrease in perceived mental effort when participants’ completed an 
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import task on a curved flow map. Layout and task interaction in Figure 4.9 indicates 

similar mental effort for import tasks and export tasks on Layout 1, and 2, whereas 

Layout 3 and 4 were ranked as less challenging on import tasks. Additionally, we 

expected Layout 4 to have a relatively higher mental effort due to its longer flows with 

relatively more edge crossings; however, participants rated Layout 4 as the least 

challenging layout when they were given an import task.  

 

 

Figure 4.8: Task and design interaction for perceived mental effort. 

Participants found import tasks less challenging when they were given 

curved flow maps.  
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Figure 4.9: Design and layout interaction for perceived mental effort. 

Although we expected Layout 4 to have a higher mental effort due to its 

longer flows with more edge crossings; participants rated Layout 4 as the 

least challenging layout when they were assigned an import task. 

 

4.5.4 TASK AND LAYOUT INTERACTION 

To capture cumulative response patterns and explain the potential causes in the variation 

of performance and perceived mental effort, we developed an interactive application: 

http://tinyurl.com/p7j5nbx (Koylu, 2014b) that displays the frequency of each node’s 

appearance in participant’s top three choices given a design, task and layout combination. 

Figure 4.10 illustrates the average rate of appearances for the top four nodes (the true four 

highest importers and exporters) among participants’ answers (top three selections) by 

task and layout. On average, approximately 80 % of the participants picked the first 

ranked importer and exporter among their top three selections. For the second rank, the 

rate of appearance (60 %) for import task was consistent across all layouts whereas the 

rate for export task decreased greatly on Layout 2 and 3. Similarly, the rate for the third 

http://tinyurl.com/p7j5nbx
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rank was substantially lower for export task on Layout 3. Only smaller differences were 

observed for the fourth rank.  

 

 

Figure 4.10: Average rate of appearances for the actual top 4 nodes in participants’ top 3 

selections. Average rate of appearances for the second and third ranks suggest substantial 

performance drop for export tasks when layout 3 was used.  

 

Figure 4.11 illustrates a comparison of the frequency of selections on export tasks 

for Layout 3 and 4. In Figure 4.11, the actual top three nodes with the highest export are 

colored yellow with a blue outline in which darker tons of blue indicate higher rank. In 

Layout 3, the actual top three nodes were selected 151 times (92+32+27) whereas the 

same nodes were selected 203 times (79+65+59) in Layout 4. The second and third rank 
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nodes received substantially less number of hits in Layout 3 than in Layout 4. Although 

there were substantially more edge crossings in Layout 4 (149) than Layout 3 (43), on 

average participants received higher correctness scores on Layout 4 (see Figure 4.4). This 

finding agrees with the hypothesis that edge crossings and the graph layout do not have a 

significant influence on the perception of node importance (Huang, Hong, & Eades, 

2006). 

As large map symbols attract more attention than small ones (Alan M. 

MacEachren, 1995), in a flow map, we expected to observe salience bias (Mitchell, Ware, 

& Kelley, 2009) towards flows of higher magnitude and/or longer length. We 

hypothesize that decreasing accuracy on Layout 3 was caused by participants’ increased 

tendency for selecting alternative nodes (incorrect choices) that were visually salient as a 

result of longer length and clear depiction of their flows. On the other hand, in Layout 4, 

second and third rank nodes were visually more salient than their alternatives as a result 

of the extended length of their outflows (especially the highest volume class with dark 

purple color). Thus, participants selected the correct nodes as they had visually dominant 

(darker color, thicker and longer) flows.  
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Figure 4.11: Frequency of hits on export task: Top-Layout 3, Bottom-Layout 4. 

Although the network is identical in both layouts, the second and third rank nodes 

received substantially less number of hits (compare 62 and 57 to 30 and 26) when Layout 

3 was used. We hypothesize that decreasing accuracy on Layout 3 was caused by 

participants’ increased tendency for selecting alternative nodes (incorrect choices) that 

were visually salient as a result of longer length and clear depiction of their flows. 
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4.5.5 USER REACTIONS 

We did not observe significant difference among the performance of participants and 

their demographics such as age, gender and education level. Approximately 30 % of 

participants provided additional feedback on the flow map design and issues related to 

the interactive features of the flow mapping and testing environment. Feedback left by 

each participant can be viewed at the application link that displays test entries: 

http://tinyurl.com/ppy86z7 (Koylu, 2014c). A statistical analysis on whether the between-

subjects factors of design and screen resolution had an influence on leaving a complaint 

or feedback showed no significant effect. The majority of the complaints and constructive 

feedback was about the difficulty with determining the direction of flows due to the 

overlapping flow lines and arrows. A number of participants suggested larger arrows; and 

more variation and contrasting hue for color scheme. Some participants suggested 

adjusting (increase/decrease) the thickness of the flow lines when using the zoom 

function.  

4.6 DISCUSSION AND CONCLUSION 

The analysis of correctness, response time and perceived mental effort revealed 

interesting patterns. Curved flow maps facilitated consistently high accuracy regardless 

of screen resolution whereas correctness scores significantly dropped when straight flow 

maps were used with a small screen resolution (screen height < 900). Screen resolution 

was found to be the only significant effect that influenced perceived mental effort, and 

participants with smaller screens rated tasks as more challenging. In contrast to its effect 

on correctness, flow line style did not have a significant effect on either response time or 

perceived mental effort. The effectiveness and potentially easier perception of curved 

http://tinyurl.com/ppy86z7
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design could be attributed to a number of factors such as using two visual clues 

(curvature and arrow) while the straight line uses only arrow for depicting direction; less 

line occlusion and edge tunneling effect (Dunne & Shneiderman, 2009) and wider angles 

that make links and arrows more visible.  

The statistical analysis of the test data showed that performance (correctness and 

response time) of participants varied significantly depending on task and layout 

combination. Participants were less accurate when they performed an export task on 

layouts (Layout 2 and 3) that alternative nodes (incorrect choices) were visually salient as 

a result of the length and clear depiction of their flows. On the other hand, participants 

were significantly more accurate on import tasks; their performance was consistent across 

all layouts; and they rated the tasks with substantially less perceived mental effort; 

whereas they took significantly more time to complete. Also, the average time spent on 

an import task significantly varied depending on the layout. Further analysis is needed to 

understand the cognitive processes that result in performance variation such as consistent 

and higher accuracy, and higher response time when a participant is assigned an import 

task. We believe that an eye tracking experiment could help gain insight into the 

cognitive processes and sequence of flow map reading when completing import and 

export tasks.  

We observed that edge crossings did not matter for the difference in performance; 

however, further studies are needed to empirically test both the effect of flow salience 

(longer, darker color and thicker flows) and edge crossings. We would like to 

acknowledge that our findings are limited by the experimental parameters, and some of 

the conclusions may not apply to the general comparison of flow map designs. 
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Since the participants were from Amazon Mechanical Turk with a certain level of 

computer skills the findings of the study are not necessarily representative of a broader 

population with diverse backgrounds. Because participants were given the freedom to 

conduct the test without any time limit and the test is not administered by an 

experimental facilitator, confounding factors related to the test environment and multi-

tasking is expected. To account for this factor, we administered a pilot test on 36 

undergraduate students in a computer lab at the University of South Carolina. We did not 

observe a significant difference between the performance of administered test takers and 

AMT users. We excluded the results of the administered test not to introduce bias that 

would be produced by the lab environment.  

In our evaluation of flow map design, we used two popular design alternatives: 

curved and straight flow lines with partial arrows; four alternative layouts of an identical 

network; and two tasks which we derived from a simple typology (i.e., high total inflow, 

outflow) that emphasize the importance of locations. Given the large number of possible 

flow map reading tasks, it is challenging to select tasks to evaluate the effectiveness and 

efficiency of flow maps. Based on the idea that comprehension of location prominence 

involves essential flow map reading tasks such as identifying volume and direction of 

flows, distinguish in and out connections of nodes, and compare cumulative inflow or 

outflow volumes of multiple nodes; we used perception of location (node) prominence as 

a way to capture the general perception of flow maps. For a more extensive evaluation of 

flow map reading, there is a need to construct a comprehensive typology patterns and 

visual tasks. For future work, we plan to include more complex tasks such as identifying 

spatial regions, network structure (clustering), and flow patterns. 
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The findings of this study have important implications for iterative design, 

interaction strategies and further user experiments on flow mapping. Future work is 

needed to improve both flow mapping and experiment. We plan to integrate interactions 

such as highlighting, isolation and animation to help reduce the cognitive load associated 

with effects such as edge tunneling, edge crossings and crossing angles. Alternative 

designs for line style with varying curvature, arrow size, and color schemes could be 

implemented. An insight-based approach would be useful to ensure that users are able to 

generate insights into flow data and visualization. Also, we believe that an eye movement 

analysis would be greatly helpful to study cognitive processes and behaviors linked to 

flow map reading. 
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CHAPTER 5  

CONCLUSION 

Our view of the world has drastically changed with an increasing focus on the flows of 

both physical and intangible phenomenon such as people, commodities, flights, money, 

information, ideas and innovation. This dissertation uses the concept of geo-social 

networks, which connect places by the flows of physical and intangible phenomenon, to 

describe and study the complex system of flows from an integrated perspective of 

GIScience and network science. This dissertation made the following contributions to the 

theory and methodologies that aim at understanding complex geo-social data by 

integrating methods of computation, visualization and usability evaluation.  

 Chapter 2 introduced a new network-based smoothing approach to calculating and 

mapping locational (graph) measures in spatial interaction networks. The new approach 

introduces a generic framework that can be used to smooth various graph measures and is 

the first attempt that truly considers the flow structure in implementing spatial kernel 

smoothing in a spatially embedded network. The approach helps overcome spurious data 

variations and unstable graph measures that exist as a result of the size-difference and 

small area problems in spatial interaction datasets. The demonstration of the approach in 

smoothing net migration rate and entropy measures in county-to-county migration data in 

the U.S. helped discover natural regions of attraction (or depletion) and other structural
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characteristics that the original (unsmoothed) measures failed to reveal. Furthermore, 

with the new approach, one can also smooth spatial interactions within sub-populations 

(e.g., multivariate components such as different age groups), which are often sparse and 

impossible to derive meaningful measures if not properly smoothed. Moreover, the 

results of the case study in migration dataset also highlighted the effectiveness of the 

approach in discovering patterns at multiple scales (e.g., national, regional and local). 

Chapter 3 introduced a novel approach to discover spatial and structural patterns 

among individual locations of a dynamic geo-social network embedded in space and 

time. A measure of connectedness was introduced to summarize the dynamic 

relationships in a point-based geo-social network by taking into account the distance 

(how far individuals live apart), time (the duration of individuals’ coexistence within a 

neighborhood), and the relationship (kinship or kin proximity) between each pair of 

individuals. The new approach facilitates the discovery of hot spots (hubs) where 

potential for spatial interaction between individuals is relatively higher across space and 

time. The approach was demonstrated using a family tree dataset and the results 

highlighted the formation of family hubs that change across space and time as a result of 

demographic processes such as migration and population change.  

Flow mapping is commonly used to visualize geo-social networks. Flow maps 

heavily rely on viewers’ comprehension of flow patterns and the spatial context in a geo-

social network; yet very little is known about how users interpret and use flow maps. 

Chapter 4 introduced a user evaluation to obtain knowledge on how map readers perceive 

information presented with flow maps, and how design factors such as flow line style 

(curved or straight) and layout characteristics may affect flow map perception and users’ 
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performance in addressing different tasks for pattern exploration. The analysis of the test 

data showed that performance (correctness and response time) and perceived mental 

effort of participants varied significantly depending on the factors of design, task, layout 

and screen resolution. Both the analysis of usability metrics such as correctness, response 

time and mental effort and user feedback provided important implications for iterative 

design, interaction strategies and further user experiments on flow mapping.  

In the remainder of this chapter, broader impacts and future research directions 

are discussed. 

5.1 BROADER IMPACTS 

The wide use of social networking and media applications has led to a revolution that 

brings together large numbers of citizen sensors who engage in the creation of 

voluminous geographic data. A variety of applications have been developed to analyze 

and understand the movement of phenomenon such as information, diseases, innovations, 

protests and activities across space and time by examining volunteered geographic 

information (VGI) collected from cyber-space and social media. Examples of those 

applications can be found in various fields such as public health (Ghosh & Guha, 2013), 

finance (Rao & Srivastava, 2012), linguistics (Graham & Zook, 2013), disaster 

management (Heinzelman & Waters, 2010) and urban geography (Hollenstein & Purves, 

2013). A broader impact of this dissertation is to bring cross-disciplinary studies of geo-

social data using a web-based platform and share new theories, computational and visual 

tools, and research findings. Currently, the findings, and methodologies developed in this 

dissertation are publically available at www.geo-social.org. Online and freely available 

tools will be included in this platform to analyze large, complex and diverse geo-social 

http://www.geo-social.org/
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data and promote education and training of not only geographers and spatial scientists but 

also social scientists. Sharing of research findings from diverse subject areas such as 

migration, spatial analysis of social networks, disease spread and analysis of social media 

data will help foster multiple perspective thinking and build a community that is 

particularly interested in combining theories and methodologies of diverse fields.  

5.2 FUTURE DIRECTIONS 

This dissertation introduced a network-based smoothing approach that considers spatial 

and network structure in discovering location characteristics in spatial interaction data 

(Chapter 2) and space-time visualization of connectedness that takes into account spatial, 

temporal and relational dimensions of a location based social network (Chapter 3). Both 

of these approach are similar in that they integrate spatial and social (network) factors 

together. One future direction should consider the development of visual analytic 

approaches that consider the dimensions of geography, network and time simultaneously.  

 The ultimate goal for developing computational and visualization methods is to 

gain insight into the underlying processes that form complex patterns of geo-social 

networks, and help decision-making, hypothesis generation and testing. However, little is 

known about cognitive aspects and usability issues related to visualization of geo-social 

networks. Chapter 4 introduces an evaluation study to gain insight into how map readers 

perceive information presented with flow maps, and how design factors such as flow line 

style (curved or straight) and layout characteristics; and different tasks for pattern 

exploration influence flow map perception. Future work is needed to improve both flow 

mapping and the experiment. Interaction techniques such as highlighting, isolation and 

animation could be integrated into flow map design to help reduce the cognitive load 
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associated with effects such as edge tunneling, edge crossings and crossing angles. 

Alternative designs for line style with varying curvature, arrow size, and color schemes 

could be implemented. An insight-based approach would be useful to evaluate how users 

generate insights into flow data and visualization. Also, an eye movement analysis would 

be greatly helpful to study cognitive processes and behaviors linked to flow map reading. 

The three manuscripts presented in this dissertation highlight the need for a 

theoretical foundation with a comprehensive pattern typology to guide the design, 

development and evaluation of computational and visualization tools for understanding 

the complex patterns of geo-social networks. Examples of comprehensive pattern 

typologies can be found in trajectory analysis (N. Andrienko & Andrienko, 2007; Dodge 

et al., 2008), information visualization (Munzner, 2009), temporal visualization (X. Li, 

2010) and graph visualization (Brehmer & Munzner, 2013; B. Lee et al., 2006; Saket et 

al., 2014). A pattern typology is useful for two reasons. First, to guide designers what 

type of patterns need to be perceived or detected with the use of the tool so that the users 

can be instructed to detect the types of patterns the tool is oriented to. Second, the theory 

provides a framework to evaluate the utility and usability of the proposed method.  

A data model (characterization) is essential for building a typology of patterns. 

Peuquet (1994) introduced a triad model that provides a conceptual basis for 

characterizing spatiotemporal data using the perspectives (questions) of location (where), 

time (when) and attribute (what). Mennis et al. (2000) further extended the triad model 

into a pyramid model to include “object” as a knowledge dimension on a higher level. 

The knowledge component in the pyramid model concerns the representation of derived 

objects, their classification and inter-relationships. Li (2010) adopted the pyramid model 
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and used the knowledge component to describe the existence (appearance and 

disappearance) of objects through time. To describe social network data embedded in 

geographic space and time, Ma (2012) further added a new dimension of social network 

elements (i.e., node, link, sub-network) using the object component. While Ma’s (2012) 

framework is useful for formalizing social network tasks, however, the framework does 

not adequately consider the interactions between the components of network, geography 

and time. Future work is needed to build a data model that takes into account geography, 

time and network dimensions as well as the interactions between those dimensions.  

Growing use of social media and networking applications and increasing volume 

of the collaborative user generated content (UGC) through crowd sourcing provide a 

great potential to obtain  and analyze large and complex geo-social data and address the 

problems concerning the environment and society, and the interaction among them, such 

as disasters, public health, security, migration, and transportation. Because the user 

generated content is unstructured and often imprecise, it is crucial to understand the 

validity, accuracy, representativeness and uncertainty of the data in order to imply the 

causal and behavioral characteristics of the users (L. Li, Goodchild, & Xu, 2013). Aside 

from the concerns for the quality, credibility and representativeness of the data, there are 

major challenges regarding the handling, analyzing and communicating the information 

mined from such large amount of user generated data: 

- Limits on the size of the datasets require integrating distributed storage and 

computing technologies for data handling and processing. 

- Due to the variety of target domains (e.g., public health, emergency response) for 

analysis, and mediums (e.g., Twitter, Flickr) for collecting the data it is 
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challenging to develop automated or semi-automated processes to clean and 

interpret the content. 

- Although the content generated by users’ posts spread through a network of users, 

very little research has looked at the relational (network) dimension of the data. 

This is mainly because it is difficult to analyze massive quantities of data which 

form complex networks with rich semantics. 

- Because of the size and dynamic nature of the data, it is challenging to develop 

computational and visual methods for in depth analysis of spatial, temporal and 

relational (network) aspects of the user generated content.   
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APPENDIX A – ADDITIONAL DISCUSSION AND RESULTS FOR CHAPTER 2 

Due to the copyright agreement of the published material, Appendix A is attributed to 

further analyses and discussion on the results of the methodology introduced in Chapter 

2. In an area-based spatial interaction network such as the county-to-county migration 

data, spatial units (counties) vary greatly not only by their population, but also their areal 

extent. For example, rural counties or counties in the Western U.S. have substantially 

larger areas than urban counties and counties in the Eastern U.S. The variation in the area 

of counties results in two major challenges. First, contiguous counties with varying area 

cause a bias for neighborhood selection. For example, a county with a large area could 

potentially have neighbors that span an extent with greater distances, whereas a county 

with a small area surrounded by smaller counties could form neighborhoods in much 

shorter distances. One potential solution to address this problem is using areal 

interpolation to consider counties partially in selecting a neighborhood, and estimate 

flows based on the included portion of each county within the neighborhood. Second, on 

a measure map result, a county with larger area is visually more dominant even though its 

population or capacity to generate flows is not high. Using a cartogram based on each 

county’s population or capacity to generate flows is a potential solution to eliminate such 

misleading patterns. 

 On a smoothed measure map such as the net migration rate, the color of a spatial 

unit (county) illustrates the measure calculated considering the flows from/to that 

county’s neighborhood rather than just the flows to/from that particular county. 
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Such information is hard to convey on a static measure map. A dynamic map with user 

controls to visualize each county’s neighborhood and flows associated with each 

neighborhood would help users better understand the dynamics and effects of parameter 

selection in the smoothing approach. 

 In the final part of Appendix A, a series of figures that illustrate smoothed net 

migration rate for all age groups are given below. These figures demonstrate the 

effectiveness of the smoothing approach in identifying spatially and structurally distinct 

migration patterns of different age groups. It is possible to summarize the general 

overview of the migration of age groups into three distinct patterns. The first group 

consists of the age groups 30-34 (Figure A.1), 35-39 (Figure A.2), 40-44 (Figure A.3), 

45-49 (Figure A.4) and 50-54 (Figure A.5) that represent the families with kids (younger 

than 20-25) who prefer living in suburbs surrounding the metropolitan areas. The second 

group consists of the age groups 55-59 (Figure A.6), 60-64 (Figure A.7), 65-69 (Figure 

A.8), 70-74 (Figure A.9) and 75-79 (Figure A.10) that represent the retirees who leave 

metropolitan areas and target recreational places close to forests and coastal areas; and 

with warmer temperatures. Within the second group, there is also an increasing tendency 

to choose places with warmer temperature (e.g., Florida, Arizona and Coastal Carolinas) 

as the age increases. The third group consists of the age groups 80-84 (Figure A.11) and 

85 and above (Figure A.12) that represent individuals who need nursing care. The distinct 

patterns that the third group highlights places with higher availability of nursing homes 

and children who potentially take care of their elderly parents. 
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Figure A.1: Smoothed Net Migration Rate for age group 30-34 

 

Figure A.2: Smoothed Net Migration Rate for age group 35-39 
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Figure A.3: Smoothed Net Migration Rate for age group 40-44 

 

Figure A.4: Smoothed Net Migration Rate for age group 45-49 
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Figure A.5: Smoothed Net Migration Rate for age group 50-54 

 

Figure A.6: Smoothed Net Migration Rate for age group 55-59 
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Figure A.7: Smoothed Net Migration Rate for age group 60-64 

 

Figure A.8: Smoothed Net Migration Rate for age group 65-69 
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Figure A.9: Smoothed Net Migration Rate for age group 70-74 

 

Figure A.10: Smoothed Net Migration Rate for age group 75-79 
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Figure A.11: Smoothed Net Migration Rate for age group 80-84 

 

Figure A.12: Smoothed Net Migration Rate for age group >= 85
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